### To Compliance and Beyond

Valley Chrome Plating's Journey to Zero Discharge



### Valley Chrome

- Manufacturer of Truck Bumpers since 1961
- Decorative Chrome Plating
- 1st Plating Shop in U.S. to be permitted for Nickel Air Emissions.
- Participant in Environmental Management Systems

### Regulatory Changes



Clean Water Act of 1977

- Increased Public Scrutiny
  - High Profile Cases

- Expanded Regulations
  - Discharge limits 3.5ppm -1.3 ppm

### Regulatory Requirements



#### Environmental Goals





Zero Discharge

- VCP as Industry Leader
  - Seminars for local platers and regulators.
  - Sharing vision & success on national level

### Compliance Approach

- What Is the Best Approach to Compliance?
  - Traditionally
    - Treat Discharge Dispose
      - A Cost of Doing Business
      - Not a Main Part of the Business
  - More Sensible Approach
    - P2 First!
      - Lower Costs (Ultimately)
      - Lower Liability
      - Better Compliance
      - More Sleep!

#### **Overall Goal**

- Reduce water flow because ...
  - Cost of water
  - > POTW restrictions
  - Reduced treatment equipment size
  - Reduced treatment expenses
  - Good neighbor
  - Environmentally concerned
  - Zero discharge?
- Without increasing metal concentrations because ...
  - > POTW violations
  - Reduced liability

### Things to Think About

- How clean do rinse tanks need to be
- What are product quality requirements
- Consideration of new processes
- Does POTW have flow restrictions
- Potential lower POTW concentration limits
- Potential permit changes
- Cost of water, discharge, labor, chemicals, permits

#### PFD



### **Dragout and Spray Rinse**



#### Flow Restriction

- Without accurate data, most shops don't know what flow rate is needed
  - >How clean is clean?
- Rinsewater that appears to be too dirty may be quite acceptable
  - ➤ Need to measure TDS
  - Need to take guesswork out of flow control
    - > Restrictors and/or conductivity controllers

#### **Summary: Sewer Discharge**

#### Flow Reduction **Normal Flow** Flow Reduced Normal Dragout High Flow Lower Flow Dragout Reduction Average M+ Conc Higher M+ Conc High M+ Mass High M+ Mass **Dragout Reduced** High Flow Low Flow Lower M+ Conc Lower M+ Conc Lower M+ Mass Lowest M+ Mass

Water & Wastewater Reduction

## Metal Finishing WWT Examples of Physical Treatment

#### Ion Exchange

A charged media attracts contaminants and exchanges them for less toxic ions.

#### Electro-dialysis

■ Ionic components are separated through a semi-permeable ion-selective membrane with the aid of electrical potential between two electrodes.

#### Ultra-filtration

■ Pressure up to 100psi is applied to a solution across a porous membrane, used to remove dissolved or colloidal material.

#### Reverse Osmosis

■ Water molecules are allowed to pass through a semi-permeable membrane at pressures up to 500psi, leaving dissolved salts behind.

#### Evaporation

■ Drive off water using heat to reduce volume and concentrate contaminates.



# Metal Finishing WWT Chemical Precipitation Hydroxide Precipitation Chart



### What's the Problem w/ Precipitation?



**Compartmentized Waste Treatment Unit** 

#### Worksheet #1:

|    |                                                                            | Yes | No |
|----|----------------------------------------------------------------------------|-----|----|
| 1. | Has your shop increased its production over the last two years?            |     |    |
| 2. | Has your shop increased its water use over the last two years?             |     |    |
| 3. | Do you think it is necessary to reduce water use and wastewater discharge? |     |    |
| 4. | Does your shop discharge more than 10,000 gallons per day?                 |     |    |
| 5. | Does your shop discharge more than 5,000 gallons per day?                  |     |    |
| 6. | Is your shop zero discharge?                                               |     |    |
| 7. | Does your shop have limited space for additional tanks?                    |     |    |

#### Worksheet #1:

|     |                                                                                     | Yes | No |
|-----|-------------------------------------------------------------------------------------|-----|----|
| 8.  | Does your shop use dragout tanks?                                                   |     |    |
| 9.  | Does your shop use spray rinsing?                                                   |     |    |
| 10. | Does your shop use an evaporator?                                                   |     |    |
| 11. | Does your shop use ion exchange for water recycle?                                  |     |    |
| 12. | Does your shop use another method of water recycle?                                 |     |    |
| 13. | Do you routinely train your employees in water and wastewater reduction techniques? |     |    |
| 14. | Do you think you have done all you can to reduce water and wastewater?              |     |    |
| 15. | Is your company signed up for the Strategic Goals Program?                          |     |    |

### An Example Zero-Discharge Shop



#### Effects of Achieving Zero Discharge



#### Positive Side Effects

- Saving H2O
- No discharge to POTW
- Re-use of Chemicals
  - Resulting in \$\$ savings

#### Negative Side Effects

- Poor Rinse Quality
- Higher reject rate (in house/in field)
- Higher Waste Treatment Costs

#### Worksheet #2

#### Mini Water & Wastewater Reduction Audit

| Opportunity |                                                                                     | Yes | No | Maybe | Unsure? |
|-------------|-------------------------------------------------------------------------------------|-----|----|-------|---------|
| 1.          | You can make money easier by increasing production rather than decreasing costs?    |     |    |       |         |
| 2.          | Have you had any discharge violations in the last year?                             |     |    |       |         |
| 3.          | Does your POTW have or plan any restrictions on your water usage or discharge flow? |     |    |       |         |
| 4.          | Do you have drip bars and drain boards installed in your shop?                      |     |    |       |         |
| 5.          | Is your process floor dry?                                                          |     |    |       |         |

### Worksheet #2 continued

#### Mini Water & Wastewater Reduction Audit

| 6. | Do you have space in your shop to add additional rinse tanks?                |  |
|----|------------------------------------------------------------------------------|--|
| 7. | Do you currently use an evaporator anywhere in your shop?                    |  |
| 8. | Do you currently use ion exchange anywhere in your shop?                     |  |
| 9. | Does your shop have a high reject rate or other quality issues?              |  |
| 10 | Do water & wastewater projects compete for investment dollars in your shop?  |  |
| 11 | Does your company have a single person responsible for overseeing water use? |  |

#### Pre-Plating Improvements



#### Necessary to Achieve Zero Discharge

- Ultraviolet light
- Filtration
- Counter flow rinsing
- Weirs & Oil Superator
- Evaporation
- Batch Treatments



#### Typical Zero Discharge Rinse Set Up



- 1) Live rinses are pumped to holding tanks where they are treated & filtered and returned to the rinses every few weeks.

  Decanted solids are sent to evaporator / waste treatment unit.
- 2) As Cleaner evaporates, dead rinse is added to cleaner tanks. Counterflow rinses are added to dead rinse so the closest tank to process tanks is always the cleanest.

#### Typical Rinse Set Up After Ni. Plating Line



- 1) Counter flow rinses are kept clean by removing metals through lon Exchange. Organics are removed by carbon bed.
- 2) Dead Rinse (Nickel) is filtered with granular carbon at all times. This solution is added back daily to Nickel tanks.
- 3) Rinses after Nickel Tanks are the same water from 1987 and looks crystal clear.
- 4) When greenish tinge and TDS go up, lon Exchange columns are regenerated.

#### Worksheet #3

#### **Understanding Your Company's** Water & Wastewater Costs Given: 1) Cost of water per 1,000 gallons 2) Cost of sewer discharge per 1,000 gallons 3) Daily Process water usage gals 4) Work days per year days P2 Cost Savings: 5) Annual Sales 6) Purchased Water Cost 7) Sewer Discharge Cost 8) Wastewater Mgt Cost 9) TOTAL Water/Wastewater Cost 10) W/W Costs as % of Sales 11) Other Costs 12) Profit [Line 5 - Line 9 - Line 11] 13) Profit as % of Sales 14) Difference in Profit by P2 15) Add'l Sales Required to Make Diff.

#### Ion Exchange



Ion Exchange Unit



#### **Cation Resin**

- 1) Rinse water is cycled through resin which captures metals. (nickel or chrome)
- 2) Clean rinse water is returned to rinses (pumps).
- 3) When resin is saturated with metals, acid is added to release elements and then sent to evaporator.

#### **Anion Resin**

- 1) Rinse water is cycled through resin which removes negatively charged ions
- 2) Clean rinse water is returned to rinses (pumps).
- 3)When resin is saturated with contaminants, caustic is added to release metals into holding tank --> reclaim add back to bath.

#### <u>STEP 1</u>

- Separate waste streams
  - Spent Concentrates
  - Dragout Rinsewater
  - Dilute Rinsewater
  - Chelated Materials
  - Soapy Materials
  - Misc. Low-Volume Wastes (e.g. solvents)

- <u>STEP</u> 2
  - Apply Source Reduction Measures to Shop
    - Spill controls
    - Flow controls
    - Dragout controls and rinses
    - Spray rinses
    - Bath life extensions
      - Acid Filtration, Weirs, Routine Maintenance (tank bottoms)
    - Training —ongoing supervision

- STEP 3
  - Find a Home for each Waste Stream
    - Recapture dragout
    - For Example:
      - Spent Concentrates treat or ship
      - Dragout Rinsewater recapture or treat
      - Dilute Rinsewater recycle
      - Chelated Materials pretreat
      - Soapy Materials treat
      - Solvents offsite recycle

### Going to Zero Discharge ... Pt.II

- <u>STEP</u> 4
  - Develop equipment "Scheme"
    - Ion Exchange for rinsewater recycle
    - Evaporator for treatment of concentrates
    - Ship offsite for untreatable materials
      - Do your homework! (reduce liability)

- <u>STEP</u> 5
  - Build/Install/Startup
    - Readily available equipment
    - Installation relatively simple
    - Startup critical!

- STEP 6
  - Train
  - Retrain
  - Supervise and test
  - Set training schedule in writing
  - Set expectations for employees
  - Train the employees to train!

#### Where to Learn about New Technology





- Regulatory Consultation
- Environmental Management Systems
- Visiting Other Sites
- Tradeshows
  - **Vendor's Showcase**
  - Sur/Fin
  - AESF Regionals
- Associations
  - NASF
  - Regional Affiliates / Branches
- Industry Consultants

#### Storm Water Capture –The Next Goal



- Capture & Re-use of all rain water landing on our facility.
- Environmental Lawsuits will require metals and other limits in runoff.
- Use of runoff will help reduce plant water usage.
- Elimination of permit and regulatory reporting requirements.

#### Storm Water Capture



STARK NUMBER WANTED BOOK OF THE STARK STARK OF THE STARK STA

- Collect rain from downspouts (8000 gal cap.)
- Pump to holding tank @ plating line.
- Filter water.
- Pump into rinses to replace evaporated H20
- Interior tank has overflow prevention switch.
- Exterior tanks can overflow if capacity is achieved.
- Water claimed is "Soft Water".

### Storm Water Capture Process

