

INNOVATIVE RAINWATER HARVESTING

INTEGRATING RAINWATER HARVESTING for INNOVATIVE STORMWATER CONTROL:

New Directions in Site Water Management

Philip Reidy, P.E.

Harvesting Configurations:

- System Types
- Traditional, In-series storage
- Cistern Sizing Models
- Integrated, Shared/Passive
- Integrated, Dedicated/Active
- Time-shifting Storm Flows

Total water envelope

New thinking, technology

- Controller Technologies
- Site-wide Solutions
- Blue Roofs
- Summary, Conclusions

Reclaimed Water:

- Post use most sources included
- Treatment required
- Regulation: growing reference to reclaimed water

Grey Water:

- Post use limited sources included
- Treatment required depending on application
- Regulation fairly universal

Harvested Water:

- Not post use usually limited to roof water
- Treatment not usually required depends on application
- Regulations typically do not address (e.g. State Plumbing Code)

System Types

Smaller Systems

400 gal.

Larger Systems

15,000 gal.

30,000 gal.

Harvesting Overview

Conceptual Model

Harvesting Storage Inserted into Drainage Profile

- "Bolt-On" Approach
- Harvesting Cost Fully Incremental
- > Footprint and Profile Considerations

Traditional Implementation

Harvesting Storage Inserted into Drainage Profile

Two primary methods for cistern sizing (Water Budget Analysis):

Avg. Historic Supply vs. Demand

Probabilistic Modeling

- Input: 20 years local hourly Precip/ET data; current and projected demand profile
 - Local weather station
 - Continuous simulation
- Output: Projected performance metrics across range of cistern sizes
 - Utilization, Reliability and Effectiveness

Discrete Probabilistic Modeling

Integrated Solutions

Integrating Detention Volume with Harvesting Volume

Integrating Detention Volume with Harvesting Volume – Cont.

Shared/Passive Storage Configuration

- > Pros: Passive; Simple implementation
- Cons: No volume savings; unlikely foot-print reduction

Integrating Detention Volume with Harvesting Volume – Cont.

Dedicated/Active Storage Configuration

- > Pros: Volume, footprint, cost savings
- Cons: Active controls, back-up power

> Inflow Monitored in Control Structure

Time-Shifted Configuration

Integrating Detention/Infiltration Volume with Harvesting Volume

Time-Shifted Storm Flows

Original Configuration:

- All Detention and Infiltration
- Central structures receive only roof water
- Traditional harvesting configuration proposed, fully incremental to project
- Use time shifting to avoid duplicate structure costs

Time-Shifted Storm Flows

Proposed Configuration:

- Convert central roof water collection structures to cisterns
- Use pre-cistern control structure to manage water level in cistern
- If cisterns are partially full at onset of storm event, control structure releases water to downstream infiltration structures at pre-set trigger points
- If cisterns are empty at onset of storm event, water is maintained for re-use
- Incremental cost of two large cisterns avoided

Harvesting System Cost – Stand-Alone

Harvesting system costs can vary widely based on:

- Storage Volume
- System Interfaces
- Control electronics

- What's typically excluded:
 - Collection System
 - Landscaping
 - Design Services

System Unit costs

Complexity and Volume

Infrastructure Construction Cost Savings – no energy/carbon

Storage: US\$1.25 – \$2.50 per gallon installed (for >10,000 gal. storage)

Controls: US\$10,000 - \$50,000+ (controller, control valves, pumps, etc.)

Innovative Stormwater Control

Predictive/RTC Controls

- Uses NWS QPF (Quantitative Precipitation Forecast) feeds and realtime sensors to control detention function of water storage
- Inexpensive, open source platform for maximum implementation potential
- Operate autonomously or as integrated system via server-side software

consultants

Consider all water sources and demands to develop a

"Total water strategy" or "Water Continuum" outlook for facility or facilities

Supply:

- Roof and surface water run-off
- Chiller loop condensate, cooling tower blowdown (if not chemical)
- Foundation drain and sump discharges
- Process discharges (water quality dependent)

Demand:

- > Irrigation
- Toilet water
- Cooling tower make-up
- Fire protection

Site Water Envelope

Innovative Stormwater Control

Roof-top Detention - Blue Roofs

- Roof-top Hydraulic Retrofits Water depth a function of structural capacity, storm control objective
 - Weirs at roof drain inlets

Retrofit Hydraulic Structure Design with Intermediate Controls

Porous overlays/perimeter dams

Innovative Stormwater Control

Roof-top Detention – Blue and Blue/Green Roofs

Modular Tray Systems

System Characteristics:

- Flexibility
 - Size of system
 - Placement configuration
- Ease of installation
 - Coarse stone ballast
 - Retrofit designs
 - Use existing drains
- Specialized outlet designs
 - Detention time and Flow rate
 - Minimize clogging

Roof-top Detention - Blue Roofs

- Modular Tray Systems
- Pilot project in NYC
- High albedo value
 - Use white underlayment and ballast
- High water capture capacity
- Manages peak flow and timing
- Limited by structural capacity
 - 3" profile typical
 - 5" to 6" profile for flood control

- Three modes of integrating harvesting in stormwater management:
 - Mid-height passive controlled discharge
 - Active Controlled discharge
 - Time-shifted storm flows
- Provides water for beneficial use at small or no incremental cost
- Advances in controllers offer wide range of creative opportunities
- > Limitations on applicability
 - Not fully beneficial for seasonal applications
 - Prioritize surface water runoff
 - Back-up power for non-passive controls
 - High-intensity storms
 - Variable regulatory acceptance

