

TUR Options Assessments: Tools that Planners Can Use

Pam Eliason, TURI Mark Rossi, Clean Production Action

TURI's Fall 2010 Continuing Ed Conference November 3, 2010 Norwood, MA

What We'll Cover

- TUR Options Evaluation process
- Why consider if a substitution is safer
- Sources of information on chemicals
- Tools for comparing options
- Considerations when looking at different materials

TUR Option ID and Evaluation Process

For each toxic in each production unit,

Brainstorm TUR Options

- Use 6 TUR techniques
- Generate lots of ideas

Screen

Eliminate TUR Options

- Technically or economically infeasible
- Not TUR

Evaluate remaining TUR Options

- •Technical evaluation
- Economic evaluation

But is it Safer?

- TUR Options Evaluation process does not focus on finding safest alternative when looking at substitution options.
- So why should you care?

Your Customers May be Asking ...

- Do you know all chemical and material ingredients in this product?
- Would you be willing to provide a full ingredient list for this product to us (the customer) or a third party?
- Does the product contain chemicals of high concern? Prop. 65? RoHS? REACH?

Regulatory Requirements

State, federal and global restrictions continue to change

Resources required to gather data to meet new substance restrictions typically follow a 'sawtooth' line, and increase over time

This slide is courtesy of Brian Martin at Seagate

By investing 'early' in full data disclosure, Seagate has been able to flatten the 'sawtooth' in resource requirements for gathering substance data

Small Group Discussion

- Are your customers asking for chemical ingredients or chemicals of concern?
- How do you generate chemical health and safety data?
- How do you identify and compare feasible substitutes?
- Do you monitor for availability of potential alternatives, and how?
- How do you choose?

Sources of Information

- Information portals:
 - Interstate Chemicals Clearinghouse
 - EU Substitution Portal

- Restricted Substances Lists
 - Industry lists
 - Government lists
 - NGO lists

Information Portals

- Web-based central location to find chemical data from government, NGO and other sources
- Emerging examples include:

www.ic2saferalternatives.org

http://www.subsport.eu/

Restricted Substances Lists

- Industry Lists:
 - Nike's "Considered Chemistry" Program
- Government Lists:
 - State lists: MA, WA, ME, CT
 - Swedish Keml restricted and phase out lists (Prio)
- NGO Lists
 - SIN list

Industry RSLs

- Companies are reluctant to publish their lists
- GC3 has assessed lists on confidential basis for 15 companies representing 4 different industry sectors

Access their findings at:

http://www.greenchemistryandcommerce.org/publications.php

Swedish Keml - Prio

Database to assist in avoiding exposures to toxic chemicals

PHASE-OUT SUBSTANCES								
Property	Classification or other data to establish the property							
Carcinogenic (<u>Category 1 and 2</u>)	R45 May cause cancer R49 May cause cancer by inhalation							
Mutagenic (<u>Category 1 and 2</u>)	R46 May cause heritable genetic damage							
Toxic to reproduction (Category 1 and 2)	R60 May impair fertility R61 May cause harm to the unborn child							
Endocrine disrupter	(See The criteria in detail)							
Particularly hazardous metals (Cd, Hg, Pb)	(See The criteria in detail)							
PBT /vPvB – Persistent, Bioaccumulating, Toxic / very Persistent, very Bioaccumulating	(See The criteria in detail)							
Ozone-depleting substances	R59 Dangerous for the ozone layer							

Prio

PRIORITY RISK-REDUCTION SUBSTANCES								
Property Classification or other data to establish the property								
Very high acute toxicity	R26 Very toxic by inhalation R27 Very toxic by skin contact R28 Very toxic by swallowing R39/26 Very toxic: danger of very serious irreversible effects through inhalation R39/27 Very toxic: danger of very serious irreversible effects in contact with skin R39/28 Very toxic: danger of very serious irreversible effects if swallowed							
Allergenic	R42 May cause sensitisation by inhalation R43 May cause sensitisation by skin contact							
High chronic toxicity	R48/23 Toxic: danger of serious damage to health by prolonged exposure through inhalation R48/24 Toxic: danger of serious damage to health by prolonged exposure in contact with skin R48/25 Toxic: danger of serious damage to health by prolonged exposure if swallowed							
Mutagenic	R68 Possible risk of irreversible effects							
Environmentally hazardous, long- term effects	R 50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment R53 May cause long-term effects in the aquatic environment							
Potential PBT / vPvB	(See The criteria in detail)							

Substitute It Now!

- An NGO driven project to speed up the transition to a toxic free world (Swedish goal)
- 356 chemicals that are Substances of Very High Concern based on the criteria established by the EU chemical regulation, REACH.

Tools for Finding Safer Substitutes

- Tools designed to identify and screen out hazardous chemicals ("bads")
- Tools that facilitate comparisons between chemicals
- Tools that identify safer chemicals ("goods")

Tools that ID the "Bads"

 These are tools that help to characterize and determine whether or not chemicals exhibit inherent characteristics that are strongly discouraged and/or banned from use

Dutch Quick Scan

Considers exposure based on use type

Substances in concern category on basis of hazard and use²²)

EVACUUM	Use of substances as	s indication of exposure		
CONCERN EXPOSURE ON BASIS OF USE	Site limited intermediate substances	Substances in industrial applications	Open professional use of substances	Substances in consumer applications
ON BASIS OF HAZARD	Low Exposure	Exposure	High exposure	Very high exposure
Very high concern	High concern	High concern	Very high concern	Very high concern
High concern	Concern	Concern	High concern	High concern
Concern	Concern	Concern	Concern	High concern
Low concern	Low concern	Low concern	Low concern	Concern
No data, very high concern	Very high concern	Very high concern	Very high concern	Very high concern

http://international.vrom.nl/pagina.html?id=37626

Predictive Screening Tools

- PBT Profiler (www.pbtprofiler.net) models PBT characteristics of chemical based on structure of chemical
- OncologicTM (http://www.epa.gov/oppt/sf/pubs/oncologic.htm) evaluates the likelihood that a chemical may cause cancer
- ECOSAR (http://www.epa.gov/oppt/newchems/tools/21ecosar.htm)
 - estimates the aquatic toxicity of industrial chemicals

Tools for Comparisons

Hazard display tools

Screening and decision guidance

tools

Design for the Environment

Alternatives Assessments:

– Flame Retardant alternatives in:

- **Furniture**
- **Printed Circuit Boards**

- Bisphenol A alternatives in Thermal Paper
- Lead-Free Solder alternatives in Electronics
- Wire and Cable Heat Stabilizer alternatives
- Supports the EPA Chemical Action Plan process

http://www.epa.gov/dfe/alternative_assessments.html

Alternative flame retardants in PCBs

		Human Health Effects					Aquatic Environ- Toxicity mental			Exposure Considerations					
					uman	Ticarti	Line		- 1		TUA	leity	me		Exposure Considerations
Chemical	CASRN	Acute Toxicity	Skin Sensitizer	Cancer Hazard	Immunotoxicity	Reproductive	Developmental	Neurological	Systemic	Genotoxicity	Acute	Chronic	Persistence	Bioaccumulation	Availability of FRs throughout the lifecycle for reactive and additive FR chemicals and resins
Additive Flame Retardants	3														
Aluminum hydroxide															
Aluminum hydroxide	21645-51-2	\boldsymbol{L}	L	L	M	L	L	M	L	\boldsymbol{L}	H	M	H^{R}	\boldsymbol{L}	
Exolit OP 930 (phosphoric a	acid, diethyl-, alı	ıminu	m salt)	(Clari	ant)										Manufacture of Manufacture of
Exolit OP 930	225789-38-8	L	\mathbf{L}	L	M	L	M	M	L	L	M	M	H^{R}	\boldsymbol{L}	FR Resin
Melapur 200 (Melamine pol	yphosphate) (Ci	ba) ⁴													End-of-Life of Electronics
Melapur 200	218768-84-4	\mathbf{L}	L	L	L	L	\boldsymbol{L}	L	M	M	\boldsymbol{L}	L	M	\boldsymbol{L}	(Recycle,
Polyphosphoric acid	8017-16-1	L	\boldsymbol{L}	L	\boldsymbol{L}	L	L	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	\mathbf{L}	\boldsymbol{L}	Sale and Disposal) Manufacture of Use of Laminate
Melamine	108-78-1	L	\mathbf{L}	L	L	L	L	\boldsymbol{L}	M	M	L	L	M	\boldsymbol{L}	Electronics
Silicon dioxide amorphous ⁵															Manufacture of PCB
Silicon dioxide amorphous	7631-86-9	L	L	L	L	\mathbf{L}	\mathbf{L}	L	\mathbf{H}^{\S}	L	\boldsymbol{L}	\boldsymbol{L}	H^{R}	\boldsymbol{L}	and Incorporation into Electronics
Silicon dioxide crystalline ⁵										into Elocationics					
Silicon dioxide crystalline	1317-95-9	L	L	H [‡]	\mathbf{H}^{\S}	L	L	\boldsymbol{L}	\mathbf{H}^{\S}	\mathbf{H}^{\S}	\boldsymbol{L}	\boldsymbol{L}	H^{R}	\boldsymbol{L}	
Magnesium hydroxide															
Magnesium hydroxide	1309-42-8	L	$L^{^{\oplus^{\circ}}}$	L	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	L	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	H^{R}	\boldsymbol{L}	

¹ The moderate designation captures a broad range of concerns for hazard, further described in Table 4-3.

http://www.epa.gov/dfe/pubs/projects/pcb/full report pcb flame retardants report draft 11 10 08 to e.pdf

³ Although additive flame retardants are present throughout the lifecycle of the PCB, they are locked into the polymer matrix of the epoxy laminate material.

⁴ Melapur 200 dissociates in water to form polyphosphoric acid and melamine ions. For this reason, Table 4-1 includes both dissociation ions.

⁵ Representative CAS numbers are included in this summary table. Section 4.2.9 includes a full list of CAS numbers.

Pharos: Building Materials Selection Tool

Target Materials:

- PVC
- Pressure Treated Wood
- Plastic Lumber
- Formaldehyde
- Biopolymers

P2OASys

Pollution Prevention Options Assessment System

The tool is designed to assist companies in two ways:

- Examine the potential environmental and worker impacts of options - the total impacts of <u>process changes</u>
- Compare options with the current process based on quantitative and qualitative factors.

				TRICHL		
				%	100	
Acute human effects		Cert	Score	Val	Sco	Cert
Inhalation LC50 PEL/TLV	ppm	100	4	100	4	100
PEL/TLV (dusts/particles)	ppm mg/m3	100	4	100	4	100
IDLH	ppm	100	2	1000	2	100
Respiratory irritation	L/M/H	100	8	m/h	8	100
Oral LD50	mg/kg	100	10	4	10	100
dermal irritation	L/M/H	100	4	I/m	4	100
skin absorption	L/M/H	100	2	1	2	100
dermal LD50	mg/kg			28120		
ocular irritation	L/M/H	100	10	h	10	100
Chronic human effects		Cert	Score	Val	Sco	Cert
Reference Dose RfD	mg/kg/day					100
carcinogen	VARC/FPA Glass	100	8	b	8	100
mutagen reproductive effects	L/M/H L/M/H	100 100	2	1	2	100 100
neurotoxicity	L/M/H	100	6	m	6	100
developmental effects	L/M/H	100	2	ii i	2	100
respir. sensistivity/disease	L/M/H	100		1/201		100
other chronic organ effects	L/M/H	100	6	m	6	100
Physical hazards	276.70.70	Cert	Score	Val	Sco	Cert
heat	WBGT, °C					
noise generation	dBA					
vibration	m/S ²					
ergonomic hazard	L/M/H					
psychosocial hazard	L/M/H					
Aquatic hazards		Cert	Score	Val	See	Cert
Vater Quality Criteria (HWQC		100		000		
aquatic LC50	mg/l	100	4	660	4	100
fish NOAEC plant EC 50	mg/l	100	2	535	2	100
observed ecological effects	mg/l L/M/H	100	10	h	10	100
Persistence/bioaccumulation	L/M/IT	Cert	Score	Val	Seo	Cert
persistence	L/M/H					
BOD half-life	days	100	6	20	6	100
hydrolysis half-life	days	100	8	330	8	100
bioconcentration	log kow	100	10	253	10	100
bioconcentration factor (BCF)	kg/l					
Atmospheric hazard		Cert	Score	Val	Sea	Cert
greenhouse gas	Y/N ODP units					
ozone depletor acid rain formation	Y/N					
NESHAP	Y/N					
Disposal hazard	.,,,,	Cert	Score	Val	Seo	Cert
landfill	L/M/H					
EPCRA reportable quantity	lbs	100	6	100	6	100
incineration	L/M/H					
recycling	L/M/H					
Chemical hazard	200200200	Cert	Score	Val	See	Cert
vapor pressure	mm Hg	100	8	57.8	8	100
solubility in water	mg/L					
specific gravity flammability	N/A 0,1,2,3,4	100	4	1	4	100
flash point	0,1,∠,3,4 °C	100	6	32	6	100
reactivity	0,1,2,3,4	100	2	0	2	100
pH	pH units					
corrosivity	L/M/H	100	2	1	2	100
High pressure system	L/M/H			03753		-/2000
High temperature system	L/M/H					
mixture/reaction potential	L/M/H	100	6	m	6	100
odor threshold	L/M/H	100	10	h	10	100
volatile organic compound	L/M/H	Cost	Saara	Val	Sco	Cont
Energy & resource use non renewable resource	L/M/H	Cert	Score	Val	500	Cert
water use	L/M/H					
energy use	L/M/H					
Product hazard		Cert	Score	Val	Sco	Cert
upstream effects	L/M/H					
consumer hazard	L/M/H	100	2	1	2	100
disposal hazard	L/M/H	100	8	m/h	8	100
Evancure potential		Cort	Seere	Wal	Can	Cort

Exposure potential

L/M/H

http://www.turi.org/home/hot_topics/cleaner_production/p2oasys_tool_to_compare_materials

Column Model

- Developed by the German Inst. for Occ. Safety
- Requires minimal info obtained from MSDS/SDS

	Acute Hazards	Chronic Hazards	Environ- mental	Fire and Explosion	Exposure potential	Hazards caused by procedure	
Very high	R26, R27, R28, R32	CMR (cat 1 or 2), R45, R49, R46	N, R50 – R59,	R2, R3, R12, R17	Gases, Liquid w/VP>250 hPA, dusts, aerosols	Open processing,	
High	R23, R24, R25, R35, R29, R31, R43, Sh, R42, Sa	CMR (cat 3), R60, R61, R40, R68)	wgk3	R41-R11, R14- R16, R19, R30, R44	50≤VP≤250 hPA	contact, large area application	
Medium	R20, R21, R22, R64, R34, pH≥11.5, R41	Repr Cat. 3, R _E 3, R _F 3, R62, R63	N, R52, R53, WGK2	R10	10 ≤ VP ≤ 50 hPA	Closed processing but exposure	
Low	R36, R37, R38, R65, R66, R67	Otherwise affecting	WGK1	55°C ≤ FP ≤ 100°C	2 ≤ VP ≤ 10 hPA	possible (e.g., filling, sampling, cleaning)	
Negligibl	e Harmless substa	nce by experience	Not water polluting	FP>100°C	VP<2 hPA, solids releasing no dusts	Tightly closed equip, closed equip w/ exhaust	

Green Screen for Safer Chemicals

Benchmarks
chemicals into four
categories
based on hazard
endpoints and levels
of concern

Prefer – Safer Chemical

Benchmark 3

Use but Still Opportunity for Improvement

Benchmark 2

Use but Search for Safer Substitutes

Benchmark 1

Avoid – Chemical of High Concern

http://www.cleanproduction.org/Green.php

Tools that ID the "Goods"

 These are tools that help you quickly select preferred products or chemicals, based on established criteria

Databases

TURI Safer Solutions Database:

http://www.turi.org/turi_lab/cleanersolutions_database

• cleancredients http://www.cleangredients.org/home
Works in tandem with DfE label

Ecolabels and Certifications

EPA DfE label:

http://www.epa.gov/dfe/pubs/projects/formulat/formpart.htm

Green Seal:

http://www.greenseal.org/findaproduct/index.cfm

Cradle to Cradle Products Innovation

Institute: http://www.c2ccertified.org/

Chemicals are Part of a System

How Do You Compare Different Materials?

- Examples of changes in materials you've considered
- What criteria do you consider?
- What tools do you use?
 - Life Cycle Assessment

Defining Sustainable Life Cycles by Principles

- Sustainable feedstocks / Sustainable agriculture
- Green Chemistry & Clean Production
- Closed Loop
 Systems / Cradle to
 Cradle / Zero Waste

Guidelines for Sustainable Bioplastics

Version 1.0 :: May 2009

Developed by
The Sustainable Biomaterials Collaborative

What Should the Sustainability Criteria be for Feedstocks?

- Are made from:
 - waste products (for example, ag waste)
 - low environmental impact resources (such as algae)
 - sustainably grown crops / trees
- Do not use genetically modified organisms (GMOs) in the field
- Do not use or result in the generation of chemicals of high concern
- Use renewable energy
- Protect / enhance air & water quality
- Promote biological diversity
- Minimize water use and transportation
- Local / regional sourcing
- Safe & healthy working conditions

DANGER!

Chemicals in this product contaminate children

www.greenpeace.org.uk/toxics

What Should the Sustainability Criteria be for Manufacturing?

- Optimize recycled content / buy sustainable feedstocks
- Use inherently less hazardous chemicals
- Exercise caution with nanomaterials
- Product designed for reuse, disassembly, recycling or composting
- Use renewable energy
- Minimize energy use, water use, pollution and waste
- Label material content
- Local / regional sourcing
- Safe & healthy working conditions

Toxics in Plastics

- Additives
- Primary chemicals for example, benzene
- Monomers vinyl chloride monomer (PVC), styrene (PS), bisphenol A (PC)

TURI What Should the Sustainability Criteria be for End of Life?

- Product is reused, repaired, recycled or composted
- For compostable safe and rapid biodegradation (soil and marine environments)
- Clear labeling
- Create infrastructure for takeback, recycling, composting
- Safe & healthy working conditions

Tools for Identifying more Sustainable Plastics

 BioSpecs - Environmentally Preferable Purchasing Specifications for Compostable Biobased Food Service Ware (v.1.0 beta)

Plastics Scorecard (v.1.0 beta)

BioSpecs & Plastic Scorecard

BioSpecs

- Biobased renewable raw materials, including:
 - Plastics (e.g., PLA, starchbased biopolymers)
 - Fibers (e.g., bagasse, cellulose)
- <u>Product</u> initially, compostable food service ware
- Life cycle: biomass, mfg, EOL
- Designed *like* an ecolabel Voluntary guidelines - criteria set 3 levels (bronze, silver, gold)

Plastics Scorecard

- Material (plastics) evaluation tool that integrates end of life issues
- Plastics both bio- and fossil fuel-based
- <u>Life cycle</u>: raw mat'ls, mfg, use and end of life (EOL)
- Grades plastics on a scale of "F" to "A+"

BioSpecs – <u>DRAFT</u> Bronze Criteria

Biomass Production

- Product must contain >90% biobased organic carbon (by total carbon weight, not total product weight)
- GM allowed in the field with offsets (Silver no GM allowed)

Manufacturing

- Fibers: 100% PCR non-food contact; 10% PCR food content
- No organohalogens (fluorine, bromine, chlorine) intentionally added
- No engineered nanomaterials without testing

End of Life

- Must be commercially compostable
- Clearly labeled "commercially compostable"
- Clearly labeled when sold in areas where no commercial composting is available

Plastics Scorecard v. 1.0 beta

- * = Maximum attainable grade
- * = Maximum attainable grade if grown with atrazine or GMOs
- *2 = Maximum attainable grade if grown without atrazine and GMOs

The inherent characteristics of a plastic's chemistry set its baseline as well as maximum level of performance in the Scorecard.

Plastics Scorecard & BizNGO

- Revising the Scorecard
- Proposed Scope
 - In scope : inherent life cycle attributes of the material, especially cradle-to-gate
 - Out of scope: product-specific attributes
 - Rationale:
 - Leverage core competencies of Clean Production Action & BizNGO
 - General tool that can be used in conjunction with existing tools and metrics such as Outdoor Industry Association's Eco-Index

Parting Thoughts

- Life cycle thinking taking a "principlebased" approach to sustainable materials
 - Define what we want
 - Set Priorities
 - Sustainable Feedstocks
 - Green Chemistry
 - Cradle to Cradle
- Transitioning from fossil fuels to renewable, bio-based feedstocks
 - Biobased not inherently better
 - Need criteria & standards for defining sustainable biomaterials and plastics across their life cycle

BioSpecs - www.SustainableBiomaterials.org

Plastics Scorecard - www.CleanProduction.org

Conclusion

- Substitute Chemicals and Materials are great TUR options
- Customers and regulations dictate that companies pay closer attention to substitutes chosen
- Tools and methods are available to help in that process
- Being systematic about this will help avoid future problems.