

Niklaus Stoecklin (1896-1982, Basel); Chemiebild - Die Neue Zeit; Image of Chemistry, The New Era; 1940; Forum 1, Novartis Campus, Basel

An Overview of the Drug Discovery Process

Presented by: Daniel F. Liberman, PhD;
Director HSE and Global HSE Special Projects Manager (ret,)
May 5, 2011 Spring Continuing Education Conference

Drug Discovery Process:

Preclinical (Target to Proof-of-Concept)
Clinical (Proof-of-Concept to Completion of Phase III)

14 years and 2 billion CHF to develop one drug Overview of drug development process

Increasing R&D Costs per Drug Total Capitalized Cost per Approval

Source: Boston Consulting Group, 2001 & Journal of Health Economics, 1991 & Tufts CSDD DiMasi 2003, 2007, NRDD 2010

Drug Discovery and Development

^{*}Target validation continues through PoC readout

CSP: Candidate Selection Phase

LMW: Low Molecular Weight

PoC: Proof-of-Concept Study

sPoC: Selected for Proof-of-Concept Study

Drug Discovery and Development at Novartis

Pipeline Progression and Governance: Early Development

Drug Discovery and Development at Novartis

Pipeline Progression and Governance: Clinical Development

DDP: Development Decision Point

FDP: Full Development Decision Point

IMB: Innovation Management Board

SDP: Submission Decision Point

Project Teams

A Project has a single team whose leadership and membership changes as the Project's needs change

A Project has a single team whose leadership and membership changes as the Project's needs change

Current Status of Drug Discovery:

Few new drugs are approved each year from all Pharma

FDA-approved Drugs*

^{*} Drugs defined as 'New Molecular Entities' (NMEs) - a term which is applied by the Food and Drug Administration to both new pharmaceutical and immunological agents

Source For NMEs: Nature Reviews Drug Discovery 7, 107-109 (February 2008)

^{**}Does not include Biologics

Building a Robust Biological Therapeutic Pipeline Number of novel molecules in clinical trials

^{*} As of October 2010. For molecules with multiple indications, phase of lead indication was counted Source: EvaluatePharma; TPP; Novartis pipeline data

2010 Pipeline Progress

Small (Chemical Actives) vs Large (Biologics) Entities

Biologics and Chemicals Are Different

Key Differences between Antibodies and Low Molecular Weight Chemical Drugs

Descriptor	Antibody	LMW drug
Drug Characteristics	Parenteral administration	Often orally administered
	Dosed weekly-monthly	Dosed hourly to daily
	Physician administered	Self administered
	Extracellular mechanisms	Any druggable target
Target	Good at protein interactions	Enzymes/receptors/channels
Side effects	Specific action	Less specific
	Low off target toxicity	Can inhibit multiple mechanisms

Antibodies Offer Specific Advantages Over Traditional Chemical Drugs

	Small Molecules	Antibodies
Clinical success rate	5%	24%
Specificity for target	Varies	Very High (100 x> sm. Mol.)
Threat from generics	High	Low
Delivery	Oral	Injectable
Dosing frequency	Usually daily	Weekly or less frequent
Size of molecule	Very small (500Da)	Large (150kDa)
Cost to produce	Low	High
Molecular targets of FDA approved drugs	248	18
Risk of side effects	Varies	Usually well tolerated
Accessible targets	Intra- and extra-cellular	Extra-cellular and secreted proteins

When Are Antibodies Better Than Chemical Therapeutics?

1. Getting to inaccessible targets

2. Great specificity, without the significant, unpredictable, off-target toxicities of LMW drugs

Steps to Developing an Antibody Therapeutic

Building A Robust Biological Therapeutic Program

Biologics Constitute >25% of NME Drug Candidates

Building A Robust Biological Therapeutic Program

Steady Growth of Biologic New Molecular Entities Biologics Constitute >30% of NME Drug Candidates

Niklaus Stoecklin (1896-1982, Basel); Chemiebild - Die Neue Zeit; Image of Chemistry, The New Era; 1940; Forum 1, Novartis Campus, Basel

TUR Opportunities in Drug Discovery

TUR Considerations in Drug discovery

Synthesis and purification steps.

Choice of solvents, reagents and purification techniques

- Solvent selection could be the simplest way to green a Med Chem process
- Use a less toxic solvent with less environmental impact...and use less of it.

Solvent Selection Guide

Pfizer Solvent Selection Guide

Preferred
Water
Acetone
Ethanol
2-Propanol
1-Propanol
Ethyl acetate
Isopropyl acetate
Methanol
Methyl ethyl ketone

1-Butanol

t-Butanol

Useable Cyclohexane Heptane Toluene Methylcyclohexane Methyl t-butyl ether Isooctane Acetonitrile 2-MethylTHF Tetrahydrofuran **Xylenes** Dimethyl sulfoxide

Dimethyl sulfoxide
Acetic acid
Ethylene glycol

Undesirable

Hexane(s)

Pentane

Di-isopropyl ether

Diethyl ether

Dichloromethane

Dichloroethane

Chloroform

Dimethyl formamide

N-Methylpyrrolidinone

Pyridine

Dimethyl acetate

Dioxane

Dimethoxyethane

Benzene

Carbon tetrachloride

A 'use this instead', rather than 'don't use' philosophy.

Reference: "Green chemistry tools to influence a medicinal chemistry and research chemistry based organization", Dunn and Perry, et. al., Green Chem., 2008, 10, 31-36

Solvent Selection

- Safer for the scientist: less toxic, carcinogenic, mutagenic etc.
- Safer for the process: less flammable, lower emissions, less chance of peroxide formation. etc.
- Less harmful to the environment: lower potential to deplete ozone, less ecotoxic, derived from renewable resources.

Principles of Green Chemistry.

- Ø Prevention
- Ø Less Hazardous Chemical Syntheses
- Ø Designing Safer Chemicals
- Ø Safer Solvents
- Ø Design for Energy Efficiency
- Ø Use Renewable Feedstocks
- Ø Reduce Derivatives
- Ø Catalysis
- Ø Design for Degradation
- Ø Real Time Analysis for Pollution Prevention
- Ø Inherently Safer Chemistry for Accident Prevention
- Ø Atom Economy