TURI (Toxics Use Reduction Institute)

Applications of ozone in biopharmaceutical industry A cleaner greener approach to cleaning and sterilization

Spring Continuing Education Conference

May 4, 2011

Akshat Gupta

Biomanufacturing Center, Dept. of Chemical Engineering

University of Massachusetts, Lowell

OUTLINE

- Introduction to Ozone
- Ozone based Cleaning In Place(CIP)
- Ozone based Sterilization In Place(SIP)
- Other Potential Applications
- Impact of Technology

OZONE

- Ozone (O_3) , is a triatomic allotrope of oxygen.
- First identified as a distinct chemical species in 1839.
- Bent molecule with C_{2v} symmetry

Tanaka, Takehiko; Morino, Yonezo "Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states". *Journal of Molecular Spectroscopy* 33: 538–551.

Mack, Kenneth M.; Muenter, "Stark and Zeeman properties of ozone from molecular beam spectroscopy". *Journal of Chemical Physics* 66: 5278–5283.

OZONE

WHY OZONE?

- Chemical Standpoint
 - Strongest broad spectrum microbial treatment
 - Completely green no residues, readily converts to oxygen

Biocidal Agent	Oxidation Potential(v)	Oxidation Capacity
Ozone(O3)	-2.07	2e-
CH3COOH (Peracetic acid)	-1.81	2e-
H2O2(Hydroge n Peroxide)	-1.78	2e-
NaoCl (Sodium Hypochlorite bleach)	-1.49	2e-
CIO2	-0.95	5e-

Ozone in water

INITIATION

Urs Van Gunten "Ozonation of drinking water: Part I Oxidation Kinetics and product formation"
Water research 37(2003) 1443-1467

- Industrial implementation Standpoint
 - Commercially available
 MKS Instruments' LIQUOZON® Ultra ozonated water system
 - FDA approved anti-microbial agent (June 21, 2001)
 - Established usage and scale up in food and beverage industry
 - OSHA defined exposure norms
 - Established sensor technology for detection

CLEAN IN PLACE

- Clean-in-Place (CIP) is a method of cleaning the interior surfaces of vessels, piping, process equipment, and associated fittings, without dismantling.
- Key parameters

 - A ction

 - C oncentrationT emperature

CLEAN IN PLACE

OZONE BASED CIP

CONVENTIONAL CIP PROCEDURE

OZONE BASED CIP PROCEDURE

2 ppm OZONATED WATER PRERINSE 15 MIN 27°C

CIP 100 (STERIS)(3%) 15 MIN 27°C

2 ppm OZONATED WATER POST CIP 100 -15 MIN 27°C

2 ppm OZONATED WATER FINAL RINSE 15 MIN 27°C

CIP RESULTS SUMMARY

SAMPLING TECHNIQUE	ANALYTICAL TECHNIQUE	RESULT
DIRECT SURFACE	VISUAL OBSERVATION	No residue
DIRECT SURFACE-SWAB	HPLC (Shiga toxin B)	<17.6 μg/ml
	UV SPECTROPHOTOMETRY (200-300nm)	<.05
	PLATE COUNT*	NIL
FINAL RINSE	HPLC	<17.6 μg/ml
	UV SPECTROPHOTOMETRY (200-300nm)	<.05
	PLATE COUNT (CFU)*	NIL
	рН	6.4
	TOC (ppm)	.169 ppm
	CONDUCTIVITY (mS/cm)	.002 mS/cm

- Sterilization In Place of Bioreactors and Process vessels is being evaluated
- Preliminary results are promising using high humid conditions with gaseous ozone and aqueous ozone
- Unlike chlorine based sterilants does not result in formation of Trihalomethanes (THMs) which are potential mutagens and carcinogens

Biological indicator: STERIS Spordex NA037

- Spore strips Inoculated with single spore species E6 population (Geobacillus stearothermophilus, ATCC 7953)
- Growth media is modified soybean casein with pH indicator
- Post incubation show color and turbidity change representing presence of spores
- 6 log reduction test meets
 ISO/AAMI requirements

- Ozone concentration: 22 mg/L
- Flowrate: 4 lpm
- Reactor volume: 2L
- Spore strip location
 - Core of reactor
 - Sample tube

OZONE PHASE	CONTACT TIME (MIN)		
	90 MIN	120 MIN	150 MIN
DRY GASEOUS OZONE	-	-	-
HUMID OZONE	-	-	+
OZONATED WATER	-	+	+

- IMPLIES INCOMPLETE INACTIVATION/ STERILIZATION
- + IMPLIES STERILITY ACHIEVED

POTENTIAL APPLICATIONS

Batch Decontamination

- Cell line : Chinese hamster ovary (CHO) cells
- Exposure: 16 mg/L overlay
- Flowrate: 3.5 lpm
- Cell necrosis tracked by Cell counter

Batch Decontamination

IMPACT OF TECHNOLOGY

- Alternative to conventional CIP and SIP
- Environmentally benign cleaning and sterilization process
- Significant energy and water consumption reduction
- No high pressure and temperature requirement for biopharmaceutical equipment

ACKNOWLEDGEMENTS

- TURI (Toxic Use Reduction Institute)
- MKS Instruments
- **❖** MBMC
- **STERIS**

University of Massachusetts Lowell

EMERGING TECHNOLOGIES AND INNOVATION CENTER