B-2-B Communication of Chemical Data Along Supply Chains

TUR Planner Continuing Education Conference April, 12 2012

www.monicabecker.com

Overview of Presentation:

- 1. Issues in B-2-B communication of chemical data along supply chains
- 2. Projects in the Green Chemistry & Commerce Council (GC3) to advance chemical data availability in supply chains

Overview of Presentation:

- 1. Issues in B-2-B communication of chemical data along supply chains
- 2. Projects in the Green Chemistry & Commerce Council (GC3) to advance chemical data availability in supply chains

"For companies in a supply chain, supply chain security is a constant concern. When a manufacturer has confidence in a particular supply chain, it can grow its business around it."

Homer Swei, Johnson & Johnson

Chemical Data & Supply Chain Management

As a manufacturer/brand, a critical element of good supply chain management is having reliable information about the chemicals in the formulations, materials and products that you purchase from your suppliers.

Companies in supply chains need this "chemical information" for a variety of reasons, including:

- regulatory compliance
- responding to customer requests
- green product design efforts (DfE or TUR)
- green product certification
- chemical disclosure initiatives

Types of Chemical data - At least 4 categories:

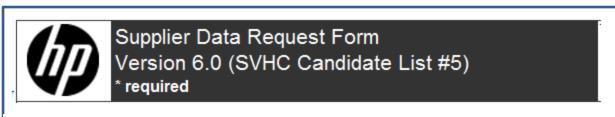
1. Chemical identification

Chemical name, trade name, and CAS number of chemical ingredients in an article or chemical mixture, which may include known impurities.

2. Chemical function

Function of a chemical ingredient in an article or chemical mixture (e.g. plasticizer, anti-bacterial agent, residual monomer, etc.).

3. Human/Ecological hazard


Human health and ecotoxicological characteristics of chemical ingredients, as well as their physical safety properties such as flammability.

4. Exposure potential

Potential for human or environmental exposure to chemical ingredients in an article or chemical mixture.

- Q. Why do companies need chemical data from their suppliers?
- A. For regulatory compliance

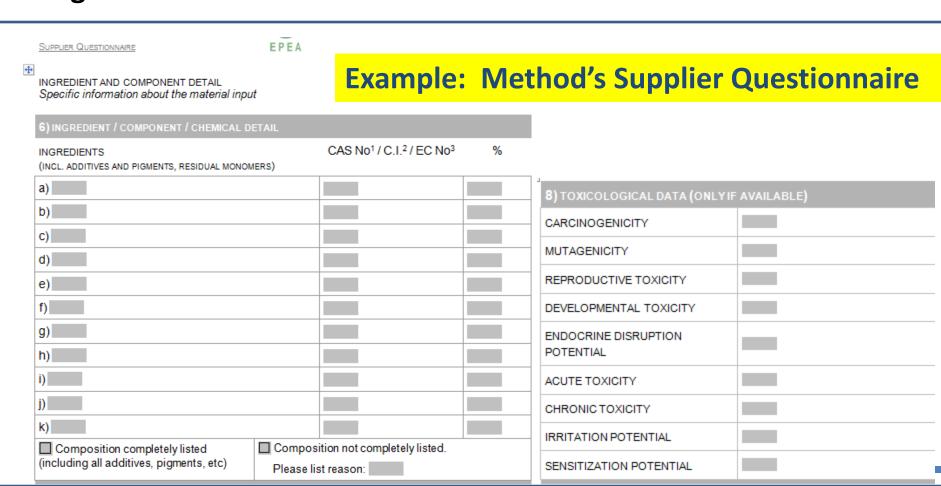
Example: HP's Supplier Questionnaire for REACH SVHC Data

Substances of Interest	CAS # (where available)	Alternate ID (EC #) (where available)	Weight (grams) * (up to 3 decimal places)	Description of Use (max field length=65)	Substance List	Other HP Req'd
1,2,3-trichloropropane	96-18-4	202-486-1			Х	
1,2-Benzenedicarboxylic acid, di-C6-8-branched alkyl esters, C7-rich	71888-89-6	276-158-1			Х	
1,2-Benzenedicarboxylic acid, di-C7-11-branched and linear alkyl esters	68515-42-4	271-084-6			Х	
2-Ethoxyethyl acetate; ethylglycol acetate	111-15-9	203-839-2			Х	
Hydrazine, anhydrate	302-01-2	206-114-9			Х	
Hydrazine, hydrate(s)	7803-57-8				X	
N-methyl-2-pyrrolidone; 1-methyl-2-pyrrolidone	872-50-4	212-828-1			Х	
Strontium chromate	7789-06-2	232-142-6			Х	

Q. Why do companies need chemical data from their suppliers?

A. To respond to customer requests for chemical information

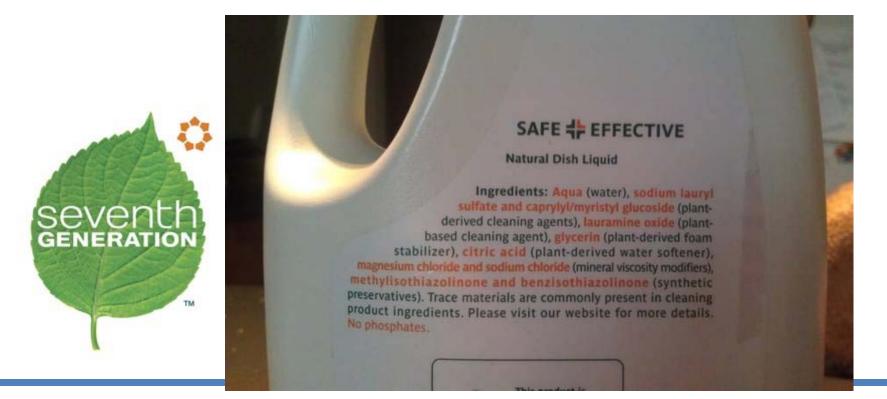
Quality - Eco-Info & Lead-free (Pb-free): Materials Declaration


This search tool will help you quickly locate Pb-Free (RoHS) and Green material content details as well as conversion dates and available supply dates. The results can be downloaded to an Excel file and will include TI's signed Material Declaration Certificate.

Example: Texas Instrument's Chemical Data Portal for Customers

		Discialmer				
Single Part Number Search		1[<u> </u>	
1. TI Part Number Partial part numbers allowed	Component Information				Homogeneous Material	Level
•	Component	Substance	CAS Number	Amount (mg)	Percentage %	ppm
2. Limit Results to No limit - sh	Bond Wire					
	Other Nonferrous Metals and Alloys	Calcium	7440-70-2	0.000003	0.0023	22
	Other Nonferrous Metals and Alloys	Copper	7440-50-8	0.000922	0.7000	6999
	Precious Metals	Gold	7440-57-5	0.130462	99.0472	990471
	Precious Metals	Platinum		0.000329	0.2498	2497
	Precious Metals	Silver	7440-22-4	0.000001	0.0008	7
	Sub-Total			0.131717	100	1000000
	Die Attach Adhesive					
	Precious Metals	Silver	7440-22-4	0.156339	79.0002	790001
	Thermosets	Epoxy		0.041558	20.9998	209998
	Sub-Total			0.197897	100	1000000
	Lead Frame					
	Copper & Its Alloys	Copper	7440-50-8	40.174173	97.4250	974250
	Copper & Its Alloys	Iron	7439-89-6	0.989664	2.4000	24000
	Copper & Its Alloys	Phosphorus	7723-14-0	0.006185	0.0150	149

- Q. Why do companies need chemical data from their suppliers?
- A. To evaluate chemical content & EH&S attributes for product design and formulation


- Q. Why do companies need chemical data from their suppliers?
- A. Participation in third party green certification programs

Example: EPA's DfE Label for Cleaning Products

	Information: (please submit one	page per formulation, us	se additional sheets as needed)			_
Company Nam Product trade na			Type of product (all purpo	se cleaner, glass cleaner,	surfactant, etc.)	
pH of product (at point of sale):		Production volume (lbs/yr)			
	umer Product 🔲 / Industrial/Institut		_		kor the	CANI
	uct is an aerosol 🔲 / Product is an ct is sold as: Ready-to-Use Formulat			dibution matical	A A COUNTY	9 Dr
_	ct is soid as: Keady-to-Ose Formulat al used in packaging (cardboard, HD	*****	Percent recycled content in		esign.	7
Type of materia	arused iii packagiiig (carubbaru, 112	71L, 11L1L, etc.)	reference yeled content in	packaging	0	30
4. Product	Formulation: (for sample form	and instructions, please s	ee the last page of this form)		U.S. E	PA
CAS No. [1]	Ct Formulation: (for sample form and instructions, ple Ingredient Class (Surfactant, Fragrar solvent, builder, che pH adjustoretc [3]		Trade Name [4]	Supplier(s) (Include Alternate Suppliers) 1 Supplier per line [5]	Other supporting information: Number of ethoxylates, average chain length, polymer MW, etc. [6]	% Composition [7]

- Q. Why do companies need chemical data from their suppliers?
- A. Voluntary efforts to disclose chemical ingredients to customers.

Example: Seventh Generation's Full Ingredient Disclosure

Why aren't MSDSs sufficient?

Shortcomings of MSDSs:

- Insufficient ingredient information
- Insufficient hazard and toxicity information

SECTION 2 – COMPOSITION / HAZARDOUS INGREDIENTS	%	TLV	PEL	UNITS
PRODUCT CONSISTS OF:				
Calcium Carbonate ** (1317-65-3)	< 50	10	15	mg/m3
Acrylic Emulsion (mixture)	< 35	NE	NE	
Benzoate Ester (proprietary)	< 5	NE	NE	
Ammonium Hydroxide (7664-41-7)	< 0.25	25	50	ppm
				<mark> </mark>
SECTION 12 – ECOL	OGICAL	INFO	RMATI	ON

Non-hazardous ingred AQUATIC TOXICITY

Not known or expected under normal use.

*Unlisted ingredients

1910.1200). **Inhalation not likely due to products physical state.

Calculated VOC: < 0.5%/wt (< 7 g/L). CARB Compliance: Yes. Prop 65 Ingredients: Yes (See Section 16)

Why aren't MSDSs sufficient?

Shortcomings of MSDSs (cont.)

- MSDSs are designed to provide information to protect the health and safety of workers. Doesn't satisfy all needs for chemical data.
- MSDSs not written or reviewed by government agencies and may have inaccuracies
- -MSDSs are typically not provided for articles
- When a manufacturer/brand is dealing with thousands of products, materials, chemicals, MSDSs do not support a system of that scale.

What if a supplier doesn't want to disclose their chemical content information?

There are mechanisms that can be used to protect IP and share data:

- Provide data under a non-disclosure agreement (NDA)
- Provide data to a third party under an NDA. The third party can evaluate the data and provide sanitized information to the customer to verify that the chemical or product meets regulatory or other requirements specified by the customer.

Mechanisms that can be used to protect IP and share data

Example:

method.

Method uses a third party reviewer to evaluate all chemical ingredients for safety prior to their selection. For a product formulation. In cases when the supplier does not want to reveal the formulation, the supplier sends the data directly to the third party under an NDA.

Mechanisms that can be used to protect IP and share data

Example:

Seagate requires that its suppliers provide full chemical content data on all parts and products supplied. Seagate enters into NDAs with suppliers and keeps data confidential within Seagate data systems.

Association Connecting Electronics Industrie

	Item/Subitem Name		Homogeneous Material	Weight	Unit of Measure	е		Level		Substance Category			Substance	CAS	Exempt	TWO INTEREST	Unit of Measure	ance +	PPM
+1 -1	1 Euro Coin	+M -N	Ring	3.79	kg '	+(-c	В	•	Nickel (external app	+5	-5	Nickel	7440-02-0	•	0.1895	g r		
						+(-c	Supplie	7	Zinc	+S	-S	Zn	7440-66-6	-	0.758	0 -		
						+-(.c	Supplie		Copper	+5	-5	Cu	7440-50-8	-	2.8425	9 -		
		+M -M	Centre Core	3.71	9 .	+(-C	В	٧	Nickel (external app ▼	+8	-S	Nickel	7440-02-0	*	3.71	9 *		
+1 -1	2 Euro Coin	+M -M	Ring	4.4	9	+(-c	В	•	Nickel (external app	+S	-s	Nickel -	7440-02-0	•	0.22	g		
						+(-c	Supplie	*	Zinz	+8	-S	Zn	7440-66-6	•	88.0	g T		
						+-(-c	Supplie	·	Copper	+S	-S	Cu	7440-50-8	-	3.3	g T		
		+M -M	Centre Core	4.1	9 [+(-c	В	•	Nickel (external app	+8	-5	Nickel	7440-02-0	•	4	g		

Overview of Presentation:

- Issues in B-2-B communication of chemical data along supply chains
- 2. Projects in the Green Chemistry & Commerce Council (GC3) to advance chemical data availability in supply chains
 - Overview of the GC3
 - Projects on chemical data

What is the GC3?

A cross sectoral, B-2-B network of more than 60 companies and other organizations formed in 2005 with a mission to promote green chemistry and design for environment (DfE), nationally and internationally

What is the GC3? (cont.)

A dynamic forum for leading edge companies to:

- Share best practices and push the frontier of business practices that promote green chemistry
- Work collaboratively on projects to develop new business strategies, technologies, tools and information

Who Runs the GC3?

- The Lowell Center for Sustainable Production (LCSP) at the University of Mass. Lowell
- Executive Director Dr. Joel Tickner
- 2 Full-time Staff and Contractors

How does the GC3 Work?

- Advisory Board
- Membership dues
- Project groups that meet by teleconference to work on projects that further the mission of the GC3
- Annual Meeting
 2012 @ NSF International, Ann Arbor, MI
 May 9 11!

GC3 Members

Chemical/Specialty Chemicals

Alpha Chemical Service, Inc.

BASF Corporation

Bayer MaterialScience LLC

The Dow Chemical Company

Kluber Lubrication

The HallStar Company

Hubbard Hall

ACS Green Chemistry Institute

Diversey

DuPont

ecoSolv Technologies, Inc.

Rivertop Renewables

Apparel & Footwear

Anvil Knitwear

Nike, Inc.

<u>Retail</u>

Walmart

Staples

Target

Green Depot

Outdoor Industry

REI

Consumer Products

Avon Products, Inc.

Johnson & Johnson

Henkel/Dial

Method Products, Inc.

Seventh Generation, Inc

Colgate-Palmolive Company

Office Furniture

Steelcase

Herman Miller

Designtex

Building Products

Construction Specialties

Aerospace

Lockheed Martin

Electronics

Bose Corporation

HP

Intel

Dell

EMC Corporation

Pharmaceutical

BWC Pharma Consulting

GC3 Members

Software

Actio Software The Wercs

Product Standards & Certification

Bureau Veritas

Green Seal

EPEAT, Inc.

NSF International

Consulting

Inside Matters

Pure Strategies

ToxServices, LLC

Environmental and Public Health

Consulting

Daley International

Sustainable Research Group

Government

Center

Minnesota Pollution Control Agency Environmental Protection Agency German Federal Environment Agency Mass. Toxics Use Reduction Institute Washington State Department of Ecology

Non Governmental Organizations

Investor Environmental Health Network
Center for Environmental Health
Clean Production Action
Cradle to Cradle Products Innovation Institute
GreenBlue
Environmental Health Fund
Pacific Northwest Pollution Prevention Resource

Current Projects

- 1. Facilitating Chemical Data Flow Along Supply Chains
- 2. Retailer engagement to advance safer chemicals and products
- 3. Business and Academic Partnerships for Safer Chemicals: "The Plasticizer Project"
- 4. Green Chemistry Higher Education

Publications & Other Resources

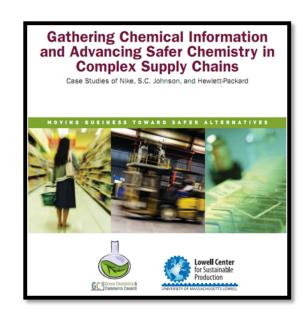
Meeting Customers' Needs for Chemical Data

A guldance document for suppliers

Overview of Presentation:

- 1. Issues in B-2-B communication of chemical data along supply chains
- 2. Projects in the Green Chemistry & Commerce Council (GC3) to advance chemical data availability in supply chains
 - Overview of the GC3
 - Projects on chemical data

GC3 Chemical Data Working Group History


2007 Tools for chemical assessment

2008 Report on Restricted Substances Lists (RSL)

2009 In-depth case studies of

Nike, HP and SC Johnson on:

- Gathering chemical data from supply chains
- Use of chemical data to develop safer products

Documents available at: http://www.greenchemistryandcommerce.org/publications.php

"Meeting Customers' Needs for Chemical Data: A guidance document for suppliers"

Meeting Customers' Needs for Chemical Data
A guidance document for suppliers HOVING BUSINESS TOWARD SAFER ALTERNATIVES
GC3 Green Chemistry & Commerce Council
February 2011 • Version 1

Table of Contents	
Introduction	6
Section 1: Why do fabricators and formulators need chemical data?	8
A brief overview of what drives data requests to suppliers	
An example from the retail sector	
Section 2: What are "chemical data"?	9
Descriptions of the various types of chemical data	
Examples from fabricators and formulators that are gathering these types of chemical data from their suppliers	
Section 3: How can suppliers benefit from collecting and providing chemical data to their customers?	12
Section 4: Why isn't a Material Safety Data Sheet (MSDS) or Safety Data Sheet (SDS) enough?	13
An overview of the limitations of MSDSs and SDSs for providing chemical data to customers	
Section 5: How do companies address confidential business information?	16
A description of the hurdles to data sharing imposed by CBI	
Company examples of overcoming these hurdles	
Section 6: How are fabricators and formulators gathering chemical data from their supply chains?	18
Strategies and tools used by companies to gather chemical data from suppliers	
Company examples of approaches taken	
Section 7: Where and how do suppliers get chemical data to provide to their customers?	19
Guidance on how to obtain chemical data to provide to your customers	

"Meeting Customers' Needs for Chemical Data: A guidance document for suppliers"

APPENDIX D-2

Industry Sector Initiatives to Streamline Chemical Data Collection

The following sector-based initiatives are profiled here:

- 1. Electronics Industry-JIG, IPC-1752
- 2. Automotive Industry-GADSL, IMDS
- 3. Personal Care Products Council Supplier Questionnaire
- American Textile Manufacturers Institute (ATMI) Voluntary Product Environmental Profile (Supplier Questionnaire)
- 5. Apparel and Footwear-AAFA Restricted Substances List
- 6. ANSI/BIFMA e3-2010 Furniture Sustainability Standard
- 7. Global Data Synchronization Network (GDSN)

1. Electronics Industry—JIG, IPC-1752

Joint Industry Guide for Material Composition Declaration for Electronics Products (JIG)

A workgroup composed of electronics industry representatives developed the JiG to promote consistent and standardized material declaration requests across the global supply chain. The JiG contains lists of materials and substances for disclosure; threshold levels for reporting; regulatory requirements establishing reporting thresholds; and recommended data fields. Three criteria determine whether substances need to be declared: Criteria 1—R (Regulated)—substances that are prohibited or restricted by regulation or require labeling; Criteria 2—A (Assessment)—substances that are likely to be subject to enacted legislation; and Criteria 3—I (Information) unregulated substances where there is a recognized market requirement for reporting their content. Thresholds for substance/material reporting are governed either by regulations for regulated substances. When a substance is restricted by law but no threshold is specified, "intentionally added" acts as threshold. For Criteria 3—I substances, the default threshold is 0.1% (1000 pmm) by weight of product. See: http://www.ce.org/PDF/IIG_101_Ed_3_1_final_100913.pdf

IPC-1752

Materials Declaration Management Standard (IPC—Institute for Printed Circuits) established standardized material declaration forms and electronic data exchange formats to facilitate electronic reporting for suppliers and customers along the electronics supply chain. See: http://members.jpc.org/committee/drafts/2-18_d_Materials-DeclarationRequest.asp

2. Automotive Industry—GADSL, IMDS

Global Automotive Declarable Substances List (GADSL)

GADSL was created by the Global Automotive Stakeholders Group (GASC), comprising automakers, parts suppliers and chemical/plastics industries. The list currently includes 139 "declarable" or "prohibited" substances or families of substances (e.g. lead and its compounds) that are expected to be present in a vehicle at the point of sale.

"Meeting Customers' Needs for Chemical Data: A guidance document for suppliers"

APPENDIX D-2

Industry Sector Initiatives to Streamline Chemical Data Collection

The following sector-based initiatives are profiled here:

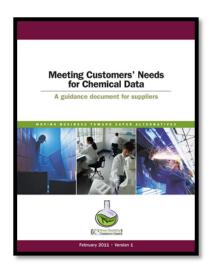
- Electronics Industry—JIG, IPC-1752
- 2. Automotive Industry-GADSL, IMDS
- Personal Care Products Council Supplier Questionnaire
- American Textile Manufacturers Institute (ATMI) Voluntary Product Environmental Profile (Supplier Questionnaire)
- Apparel and Footwear—AAFA Restricted Substances List
- 6. ANSI/BIFMA e3-2010 Furniture Sustainability Standard
- 7. Global Data Synchronization Network (GDSN)

1. Electronics Industry—JIG, IPC-1752

Joint Industry Guide for Material Composition Declaration for Electronics Products (JIG)

A workgroup composed of electronics industry representatives developed the JiG to promote consistent and standardized material declaration requests across the global supply chain. The JiG contains lists of materials and substances for disclosure; threshold levels for reporting; regulatory requirements establishing reporting thresholds; and recommended data fields. Three criteria determine whether substances need to be declared: Criteria 1—R (Regulated)—substances that are prohibited or restricted by regulation or require labeling; Criteria 2—A (Assessment)—substances that are likely to be subject to enacted legislation; and Criteria 3—I (Information) unregulated substances where there is a recognized market requirement for reporting their content. Thresholds for substance/material reporting are governed either by regulations for regulated substances. When a substance is restricted by law but no threshold is specified, "intentionally added" acts as threshold. For Criteria 3—I substances, the default threshold is 0.1% (1000 pmm) by weight of product. See: http://www.ce.org/PDF/IIG_101_Ed_3_1_final_100913.pdf

IPC-1752


Materials Declaration Management Standard (IPC—Institute for Printed Circuits) established standardized material declaration forms and electronic data exchange formats to facilitate electronic reporting for suppliers and customers along the electronics supply chain. See: http://members.jpc.org/committee/drafts/2-18_d_Materials DeclarationRequest.asp

2. Automotive Industry-GADSL, IMDS

Global Automotive Declarable Substances List (GADSL)

GADSL was created by the Global Automotive Stakeholders Group (GASC), comprising automakers, parts suppliers and chemical/plastics industries. The list currently includes 139 "declarable" or "prohibited" substances or families of substances (e.g. lead and its compounds) that are expected to be present in a vehicle at the point of sale.

"Meeting Customers' Needs for Chemical Data: A guidance document for suppliers"

Part Number	Part Ma	58 U	OM	Pre-Consumer Recycled (%)	Post-Cons	ume
28-6910-14	110	g	100	10	20	
Subpart Name	Material	Supplier	Substance	Class/Category	CAS Number	Mai
28-LUBR	HG_20 MAT123	SUPPLY CO		9.2 LUBRICANTS		50
		•	MERCURY	MERCURY COMPOUNDS	7439-97-6	50
			Total Unspe	ofied		0
28-6910-47	PB_43 MAT123	SUPPLY CO		3.2 COPPER ALLOYS		50
			LEAD	LEAD AND LEAD COMPOUNDS	7439-92-1	25
		•	EE	OTHER	7439-89-6	25
		•	Total Unspec	rified		0
28-6910-PCB	PB_17 MAT123	N/A		8.1 ELECTRONICS		10
			LEAD	LEAD AND LEAD COMPOUNDS	7439-92-1	5
		•	EE	OTHER	7439-89-6	5
			Total Unspe	offied		0

APPENDIX D-3

Software for Collecting and Reporting Chemical Data to Customers

A chemical data management system can be a valuable tool for handling data collection and reporting requirements. Listed below are examples of commercial software systems.

1. WercsHELP

WercsHELP is a software tool that allows companies to track and assess ingredients in products, as well as regulatory implications of those ingredients. Several retailers, such as Sears and Walmart, now require chemical product suppliers to provide information on intentionally added ingredients to WercsHELP. WercsHELP keeps the formulation data confidential, but lets retailers know whether the products are regulated under federal or state environmental laws, and how they should be handled and disposed of. See www.wercsmart.com/wercs.html

2. Material Disclosure Software from Actio Corporation

Actio Chemical Management software is designed to allow suppliers and manufacturers to automate communications and their chemical-substance data management. Actio software automates supplier efforts and funnels related data into a unique, secure, central database. Both suppliers and manufacturers quickly become compliant with regulations, directives and standards relevant to their needs—such as REACH, RoHS, WEEE, IPC 175x, GADSL, Tier 2, safer chemistry regulations, and HAP/VOC-related emission reductions. See: www.actio.net/default/index. cfm/products/material-disciosure

3. InSight Environmental Compliance Software from PTC

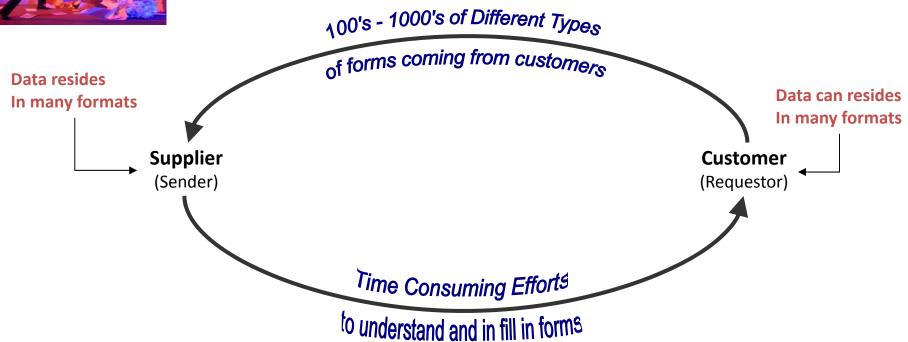
Software company PTC offers a suite of programs aimed at Product Lifecycle Management in the Industrial, High Tech, Aerospace & Defense, Automotive, Consumer, and Medical Device Industries. InSight allows users to track the environmental performance of its products, materials, and parts from its suppliers along multiple dimensions. See: www.ptc.com/products/insight/environmental-compliance

4. Comply Plus Software from IHS

Comply Plus from IHS assists firms with data management by automating data collection from MSDSs, regulatory sources, and chemical inventories into a system customized to each firm's needs. This system allows companies to begin where they are and develop more complex data management systems as their needs and experiences change over time. The system allows companies to develop detailed chemicals management systems to identify and reduce chemicals subject to regulatory requirements and others of concern through supply chains. See: www.doiphinmsds.com/default.asp?id=17

5. The SciVera Lens

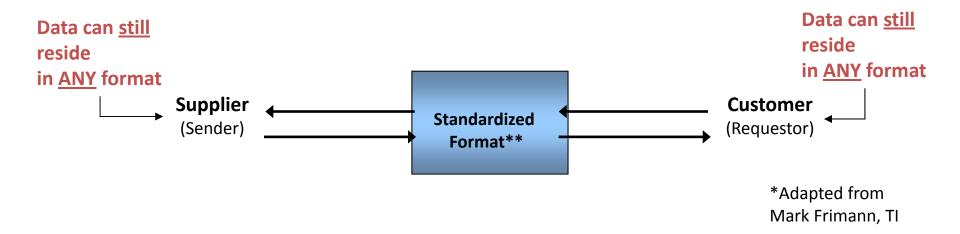
SciVera Lens is a web-based assessment system able to analyze both final products and their chemical ingredients. The system is designed as a tool for decision-makers of varying levels of familiarity with chemicals management by collecting product ingredient data along supply chains. The program enables data sharing between customers and suppliers while protecting CBI and other supplier information. The Lens is currently available to a limited number of industrial sectors. See: www.scivera.com/products.php



2011/2012

GC3 Chemical Data Standardization Project

The Problem: Lack of Standardization*



Current methods for data requests:

*Adapted from Mark Frimann, TI

- There are almost as many different types of forms as there are customers needing data
- Works against efforts to communicate chemical data in supply chains

Solution: Standardization*

** <u>Using a standardized, XML based format allows 2 ways to exchange data</u>

- Pull = Customer sends the XML data request with criteria and Supplier sends XML data
- Push = Supplier publishes XML data for download by customers
- Automation possible by using it as a data transfer standard with any required translators feeds from the Supplier database and to the Customer database

The electronic's sector's IPC175X Standard provides a framework for standardization in electronics and other sectors

Potential benefits of standardization

- Increased data availability
- Reduced cost of data gathering/communication
- Improved quality of data

GC3 Project objective:

To evaluate the <u>feasibility</u> & <u>benefits</u> of standardizing chemical data types & formats in supply chains

Project Approach:

- Engage in dialogue with companies in an actual supply chain
- Chose the Electronics Sector

Why? We could learn a lot from their experience!!

- Significant need for, and experience with, collecting/reporting chemical data – to respond to RoHS, WEEE, REACH, etc.
- Existing standard/data exchange protocol IPC 1752 (U.S.)
- New, improved, international standard/data exchange protocol:

International Electrotechnical Commission

IEC 62474 - Material Declaration for Products of and for the Electrotechnical Industry

- Standardized protocol for companies in electronics supply chain to track, exchange and declare information about the chemical and material composition of their products
- Provides software developers, specifications on the data format for the exchange of material declaration data (in XML)

Electronics Supply Chain Pilot

Pilot Team Members

Mark Frimann, Texas Instruments **Brian Martin & Bill Haas, Seagate** Lyndsey Ridgeway, HP Roger McFadden, Staples

Chemical data "superset" = Universe of Data that Will Satisfy the Needs of the Companies in Our Supply Chain

1. Requestor (Customer) Information**

Company Unique ID (DUNS or

equivalent)

Company Name Company Address

Contact Name

Contact Title
Contact Email

Contact Phone Number

Division Name Business Unit

2. Supplier (Sender) Information

Company Unique ID (DUNS or equivalent)

Company Name Company Address Contact Name Contact Title Contact Email

Contact Phone Number

Division Name Business Unit

3. General Component Information

Request Date

Need Date

Requestor Component Name

Response Date

Supplier Component Name

Component Build Site Component Mass

Unit of Measure (mg, gram)

Unit Type (each)

4. Component Compliance Declarations

Component/ Device Status - REACH

Component / Device REACH Availabilty Date

Component / Product Status - RoHS

EU RoHS Exemption (if applies)

Component / Product RoHS Availability Date

5. Chemical Substance Information

CAS Number or Other Unique Chemical ID No.

Substance Name

Amount in Component (mg, grams or kg)

Substance Concentration in component – ppm and/or %

[calculated from *Component Mass* and *Amount in Component* above]

Description of Chemical Use

Function of Chemical

6. Substance & Material Group Information*

EU RoHS Substance Category

From IPC 1752 Class B (when updated from IEC 62474)

Material Class ID (Number)

Material Class (Name)

IPC 1752 Class C

JIG 101 threshold for substance [taken from JIG]

Below threshold?

<u>REACH</u>

Substance on ECHA Substance List?

(released and proposed Candidate List)

JAMP**

Material Name

Material Group ID

Material Group

Use Category

Staples is seeking additional information

Our Group's Operating Principles for a Standardized System for Chemical Data Communication:

- No de minimis level for reporting if you know the chemical is in the component, it should be reported (and you should know!).
- No zeros zeros cause problems. If a chemical is present, report it and carry the number through no matter how low the concentration.
- Report any impurity (i.e., chemical that was not intentionally added) that you know about, particularly if it's on a restricted substances list.

Data Modules for Electronics Sector

Q: Can some of these modules be harmonized with modules for other product sectors???

Modules <u>Not</u> Specific to Electronics Sector????

- 1. Requestor (i.e., Customer) Info
- 2. Supplier (i.e., Sender) Info
- 5. Chemical Substance Info

Modules Specific Only to Electronics Sector????

- 3. General Component Info.
- 4. Component Compliance Declarations
- 6. Substance & Material Group Info.

Some lessons learned

- Companies in our electronics supply chain see strong benefit of standardizing and automating chemical data flow, and some (TI & Seagate) are leading efforts to develop the new, global IEC Material Declaration Standard;
- 2. This standard is a first step, but need the software to enable automated data exchange key for large companies with thousands of complex products;
- Third party software providers are jumping in to develop software;
- Despite the standard and software, still not easy for large companies to change over their IT systems to accommodate a new approach – time, cost, and organizational inertia;

Some lessons learned

- 5. There is an existing third party central repository for chemical data for companies in the electronics supply chain BOMCheck but companies in our group do not want to use external systems that "hold" their data;
- 6. There can be a core set of common data, but must expect that companies may want some additional data to support their internal programs. Need to accommodate this with open text fields, etc.
- 7. Gap: Lack of robust unique chemical identifiers (i.e., numbers) for chemicals and materials (a key enabler of data standardization);
- 8. Useful for companies in a supply chain to meet on calls to learn about each companies' data needs, why they do things the way they do, obstacles to change;

Possible Next Frontier:

GC3 Green Chemistry & Commerce Council Moving Business Toward Safer Alternatives

Explore Tools for Data Exchange to Support Nike Zero Discharge Initiative/ Joint Roadmap

NOVEMBER 18, 2011

NIKE ROADMAP TOWARD ZERO DISCHARGE OF HAZARDOUS CHEMICALS

NIKE, Inc. outlines specific actions being taken as a Company toward the goal of zero discharge of hazardous chemicals. ABOUT CAREERS RESPONSIBILITY INVESTORS

- November 2011

disc

The

tou

20: We

cha

con

NIKE, Inc. Commitment

NIKE, Inc. (Nike) has long beer to a more sustainable supply cl that are decoupled from constr process changes, we believe we renewable energy consumption NOVEMBER 18, 2011

ADIDAS GROUP, C&A, H&M, LI NING, NIKE AND PUMA PARTNER TO REACH ZERO DISCHARGE BY 2020

And Man Auturas shaaina

Participate in GC₃ Data Exchange Pilot Project

Disclosure and chemical inventories are among the most challenging of issues toward the zero discharge of hazardous chemicals by 2020. Although we see p disclosure, we also believe that the strategy will require tools for data exchang decentralized structure and legal and regulatory conditions of the industry's so

As a member of the GC3 (Green Chemistry and Commerce Council), Nike will p project to evaluate the feasibility and benefits of standardizing chemical data t systems across supply chains. The pilot project will utilize a simple consumer p

http://nikeinc.com/news/nikeroadmap-toward-zero-discharge-ofhazardous-chemicals