

# Modern Trivalent Chrome Plating Technology Comparison

By Matt Stauffer PAVCO, Inc.



#### Technology Comparison

- Sulfate
  - Sulfate base and Iridium Mixed Metal Oxide anodes
- Chloride
  - Chloride salts and graphite anodes
- Hexavalent
  - Chromic acid and lead anodes



#### **CHROME APPEARANCE**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Blue-bright chrome color. Can get close to hex chrome blue-bright appearance. Not exact!

Chloride-based Trivalent

Not blue-bright, darker in color.

Hex Chrome Plate

Beautiful blue-bright.



#### **EASE OF CONTROL**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Very easy and routine, wider operating parameters.

Chloride-based Trivalent

Very easy and routine, wider operating parameters.

Hex Chrome Plate

Difficult due to very tight operating parameters.





#### **INCREASED PRODUCTIVITY**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Averaging 33% - 50% increase in pieces per rack.

Chloride-based Trivalent

Averaging 33% - 50% increase in pieces per rack.

Hex Chrome Plate

Limiting factor.





#### **REJECT RATES**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Low due to ease of operation, no tendency for white wash, and no threat of burning.

Chloride-based Trivalent

Low due to ease of operation, no tendency for white wash, and no threat of burning.

Hex Chrome Plate

Up to 15% due to tight operating parameters, potential white wash, and potential burning.



#### **IMPURITIES**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

High tolerance – Metallics can be plated out.

Chloride-based Trivalent

Low tolerance - Ion exchange filtration is required.

Hex Chrome Plate

Extremely high tolerance with the exception of chlorides.



#### Tolerance Comparison

| Contaminant | <b>SULFATE</b> | <b>CHLORIDE</b> | <b>HEX</b> |
|-------------|----------------|-----------------|------------|
| Copper      | 10 ppm         | 0 ppm           | 10,800 ppm |
| Nickel      | 50 ppm         | 20 ppm          | 5,100 ppm  |
| Iron        | 30 ppm         | 100-150 ppm     | 1,600 ppm  |
| Zinc        | 30 ppm         | 20 ppm          | 2,700 ppm  |





#### **TEMPERATURE**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

50 - 58° C.

No solution growth.

Chloride-based Trivalent

25C. solution growth can be an issue

Hex Chrome Plate

30-50C





#### **BURNING**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

No burning.

Chloride-based Trivalent

No burning.

Hex Chrome Plate

Susceptible to burning.





#### **WHITE WASH**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Not susceptible to current interruption. Not dull @ 0.8 um

Chloride-based Trivalent

At times blue-wash like white wash on edges of parts. (High Thickness)

Hex Chrome Plate

Current interruption of all types causes white wash.



#### **POST TREATMENTS**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Required on un-plated steel.

Ex: Tubular.

Chloride-based Trivalent

Required on un-plated steel.

**Ex: Tubular.** 

Hex Chrome Plate

None required.



#### **COATING HARDNESS**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Slightly softer than hex chrome.

Chloride-based Trivalent

Slightly softer than hex chrome.

Hex Chrome Plate

Hardest, so can be polished in the aftermarket without fear of wearing down the coating.





#### **ANODES**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Special anodes are required.

Approved sources are critical

Chloride-based Trivalent

**Graphite** 

Hex Chrome Plate

Lead



#### **WASTE COSTS/TOXITY**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

Lowest waste costs and safer to operate. On a dry basis 1/10 the sludge is generated per volume of treated solution.

Chloride-based Trivalent

Low waste cost (exception of ammonia restriction in some municipalities) and safer to operate.

Hex Chrome Plate

High waste costs and safety hazard to employees.





#### **COST OF CHEMISTRY**

**Advantage Indication** 

**Disadvantage Indication** 

Sulfate-based Trivalent

\$0.04 USD/ sq. ft.

Chloride-based Trivalent

Can cost more than sulfate \$0.06/sq. ft.

Hex Chrome Plate

\$0.02 USD/ sq. ft.





# Bright Trivalent Chrome Evolution Recent Improvements



#### Improved Sulfate System

#### New vs. Old

- Conducted studies to improve process for high thickness applications.
  - Hex chrome
  - Metals
  - Temperature
  - Chrome
  - Brightener



#### Improved Sulfate System

#### Improved Plating Rate

- Modified additives to reduce hex formation
- Chrome Levels 8-15 g/l vs. 6-8 g/l
- Increase Operating Temperature



#### Plating Rate – 10 Minutes

#### Standard

0.25-0.4 microns /10 minutes

#### New

0.5-0.8 microns/ 10 minutes

#### Operating Conditions

ISO 9001:2008 REGISTERED

|                         | Range    | <u>Optimum</u> |
|-------------------------|----------|----------------|
| Temperature             | 52-60° C | 57° C          |
| pH                      | 3.3-3.8  | 3.5            |
| Cathode Current Density | 4-10 ASD | 7 ASD          |



#### Improved Plating Rate





0.7 microns – 7 minutes



#### Metallic Contamination

- Metal contamination of iron, nickel, and zinc have high impact on efficiency and appearance
- 200 ppm Nickel Plated deposit is 90% nickel, 10% chrome
- 150 ppm Zinc Plated deposit is 100% Zinc
- 100 ppm Iron Plated deposit is 60% iron
- Deposit color with metals is Poor
- Need for service tool to remove metallics



#### Metallic Contamination

### Service Tools are Available to Remove Metallic Contamination

- Metal precipitant, binds and precipitates nickel and iron
- Keep plating, no down time
- Consistent Plating Rate
- Consistent Color





#### 200 ppm Nickel treated with 0.25% Purifier





#### **Control** Issues

- 1. Hex Chrome formation
- 2. Efficiency
- 3. Analytical Technical Support
- 4. Metal contamination

#### Cr+6 Formation

Serious issue with Cr+3 baths. Cr+6 causes thin deposit and skip plating.

Issues causing High Hex chrome:

- Specific Low Additive. Specific additives must be analyzed to insure correct solution concentrations.
- Incorrect Additive Addition Rate Platers must make regular and correct additive additions based on amp hours.
- Anode Quality Poor anode quality will cause Cr+6 formation.
  - NO Mesh inconsistent coating thickness, poor conductivity
  - High quality anodes must be used. Pavco has approved anode sources.
- Chloride- Test bath samples for chloride in. Excess chloride due to poor nickel rinsing can be a problem for anode coating and for additive consumption.



#### Thickness Testing

Knowing plating rate and total thickness is critical to maintain proper operation of modern sulfate based Cr+3 plating solutions.



#### Metal Contamination

## It is important to understand the effect of metal contaminants.

- Nickel reduces efficiency and gives poor color.
- Iron improves LCD but causes bad darkening of the deposit.
- Zinc ties up additives and slows the plating rate down.
   Extra additives must be added to help maintain the plating speed and thickness in the presence of zinc.
- Platers will better understand this with the availability of thickness data.



#### How to get Blue color

- No hex chrome
- Good plating rate, total thickness over 0.2 microns
- Keep nickel and iron low
- Purify by dummy plate or ion exchange routinely
- Use Purifier if not dummy plating
- Must dummy or ion exchange for zinc



#### Measuring Color — LAB 180 9001:2008



L= light intesity

A= red/green

b= blue/yellow

Blue = (-) b

Yellow = (+) b

Hex chrome = -1.5 to -1.9

Trichrome sulfate = -0.5 to -1.0

Trichrome chloride = +0.5 to +2.0

Nickel = +4



#### Summary

- Modern Cr+3 plating is a viable alternative to Cr+6 plating for most applications.
- Overall cost of modern Cr+3 plating is less than Cr+6 plating.



#### Summary

- Color and hardness of modern Cr+3 plating is comparable to Cr+6 plating.
- Understanding metallic contamination, plate thickness, plating rate and additives are important for successful operation of modern Cr+3 plating baths.





Thanks for your attention!

Questions?