

MISSOURI

Emerging Safer Alternatives for Chromate Conversion Coatings and Primers

Prof. Bill Fahrenholtz and Prof. Matt O'Keefe Missouri University of Science and Technology billf@mst.edu

Acknowledgement

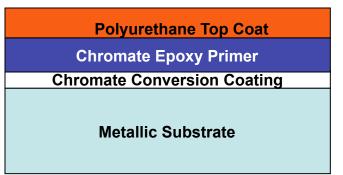
 The support and guidance of Bruce Sartwell of the Strategic Environmental Research and Development Program (SERDP) under SERDP Project WP-1618, Contract W912HQ-08-C-0008

- Prof. Jim Stoffer, Prof. Tom O'Keefe, and Dr. Paul Yu for their innovation and guidance over the past 20 years
- Rich Albers and Eric Morris of PPG Aerospace (formerly Deft)
- All of the students/post-docs, especially: Dr. Will Pinc, Dr. Simon Joshi, Dr. Daimon Heller, Dr. Surender Maddela and Dr. Becky Treu

Research goal: Reduce technical risk of implementing chromate alternatives on military aircraft by investigating corrosion protection mechanisms

Problem

- Corrosion and oxidation cost the U.S. DOD ~\$20B annually
 - Maintenance cost is about \$100,000 per aircraft per year
 - Protective coatings based on chromates



Background

- Chromates are effective corrosion inhibitors
 - Low cost, highly protective
 - Can overcome processing issues
 - Robust protection mechanism
- Many different potential replacements
 - More than 90% by weight of chromate is in the primer
 - Conversion coatings provide corrosion protection and adhesion
 - Primers provide long-term corrosion protection

Deft non-chromate primer on an Apache helicopter fuselage

- RE compounds are potential replacements for chromates
 - Environmentally friendly corrosion inhibitors
- RE phases are <u>NOT</u> inherently protective
 - Protection depends on phase of RE compound, type of coating, and pH of the environment
 - Both Ce/Pr and mixed oxidation state (i.e. Ce^{3+/4+} Pr^{3+/4+}) compounds are of interest

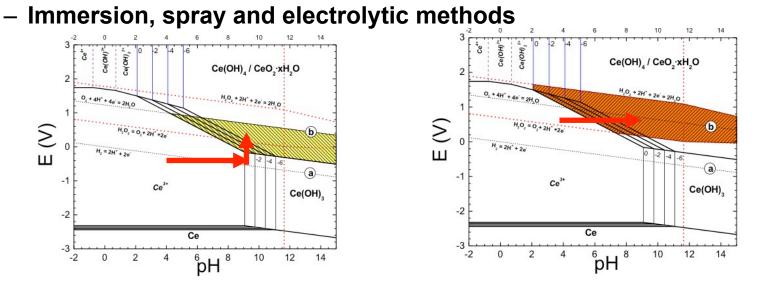
*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Outline

- Conversion coatings
 - Promising alternatives
 - Cerium-based conversion coatings
 - Deposition methods
 - Characterization and testing
 - Corrosion protection mechanisms
- Primers
 - Promising alternatives
 - Pr-based inhibitor package
 - Phase stability
 - Formulation and evaluation of model primers
 - Proposed corrosion protection mechanism

Primers with rare earth inhibitors during a six month field evaluation on the John C. Stennis

Chromate Alternatives

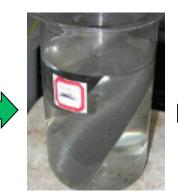

- Trivalent chromium passivation (TCP)
 - Developed and patented by U.S. Navy (NAVAIR)
 - U.S. Patents 6,375,726; 6,511,532; 6,521,029; 6,527,841; 6,663,700; 6,669,764
 - Commercial product (e.g., METALAST TCP-HF, Alodine T-5900)
- Fluorozirconate coatings
 - Replacement for phosphating processes
 - Commercial product (e.g., PPG Zircobond)
- Oxy-anion analogues to chromates
 - Molybdates and vanadates
- Sol-gel coatings, anodizing, and others

None is a drop-in replacement for CrCCs on all alloys

Set Ce-Based Conversion Coatings

- Originally investigated by Hinton
 - 1000 ppm CeCl₃ in water, deposition time 100's of hours
 - Coating deposited selectively on intermetallics, cathodic inhibitor
- Subsequent research by many groups including Missouri S&T
 - Oxidizing additive reduces deposition time to minutes

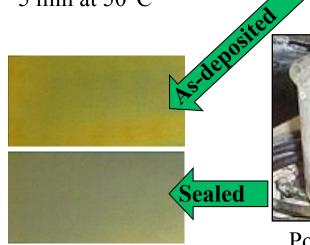
B.R.W. Hinton, D.R. Arnott, and N.E. Ryan, Materials Forum, 9(3) 162-173 (1986). P. Yu, S.A. Hayes, T.J. O'Keefe, M.J. O'Keefe, J.O. Stoffer, J. Electrochem. Soc., 153(1) C74-C79 (2006).


Coating Deposition

Al 2024-T3 panel Alcohol wipe

Alkaline Degreasing 5 min at 55°C

Acid Activation 1 wt% H₂SO₄ 5 min at 50°C

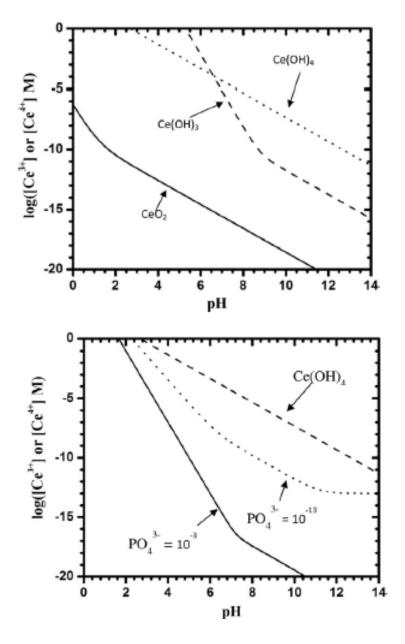

5 Sprays with 35 sec delay

- Coating solution: 0.11 M CeCl₃•H₂O, 1 M H₂O₂, 2.4 g/L gelatin, pH to 2.3 w/ HCl
- Post-treatment (sealing) solution: 2.5 wt% NaH₂PO₄

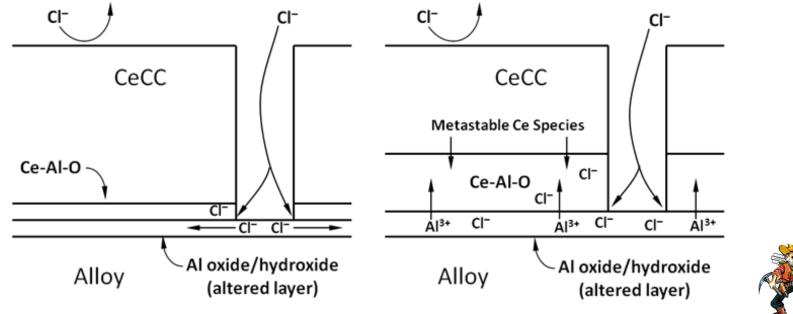
Best coatings ~400 nm thick, 336 hours protection is ASTM B117 salt spray

Water Rinsing after each step

Coated Panels

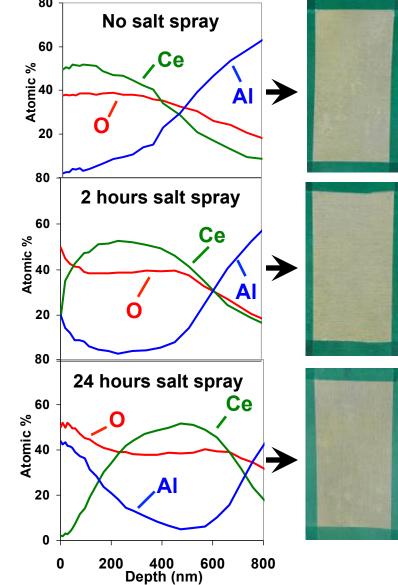

Post-Treatment 5 min at 85°C phosphate sol'n

Cerium Solubility


- As-deposited CeCCs consist of hydrated cerium oxide species
- Ce oxides are more soluble at low pH
 - Ce(OH)₄ is the most soluble
 - CeO₂ is the least soluble
- Post-treated CeCCs contain hydrated cerium phosphate species
 - Ce phosphates less soluble than oxides
 - Increasing phosphate concentration decreases Ce solubility
- Dissolution of Ce species during corrosion seems unlikely

S. Joshi, E.A. Kulp, W.G. Fahrenholtz, and M.J. O'Keefe *Corrosion Science* **60** 290-295 (2012)

- Interfacial layer formation and structural changes demonstrate CeCCs are not static barriers, but actively inhibit corrosion
- Chloride ions attacked at crack/substrate interfaces
 - Al³⁺ ions released from altered layer may react with metastable Ce species
 - Transition of cerium hydrogen phosphate species to CePO₄·H₂O may affect pH
 - Facilitate formation of more stable phase(s)

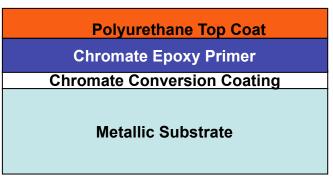

D.K. Heller, PhD Thesis, Missouri S&T, 2010

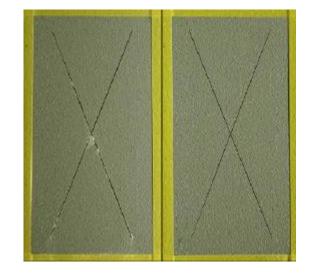
MISSOURI Salt Spray Changes Impedance Solution Salt Spray Changes Impedance Changes in post-treated CeCCs No salt spray

during salt spray 40000 30000 Z" (Ω - cm²) 6 hours 20000 12, 24, 96, 168 hours 3 hours 10000 336 hours 0 hours 1 hour 0 0 20000 40000 60000 80000 100000 $Z'(\Omega - cm^2)$

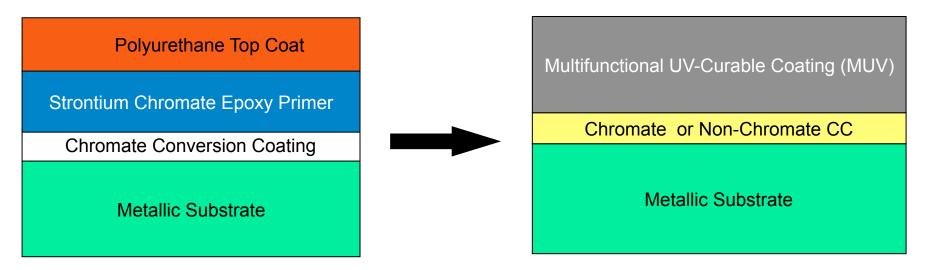
- Impedance doubles during first 24 hrs
- Al, O rich layer develops, no visible corrosion

W. Pinc, D. Heller, W. Fahrenholtz, and M. O'Keefe, *ECS Trans.* **25** (29) 3 – 17 (2010).


CeCC Protection Summary


- CeCCs offer corrosion protection to high strength aluminum alloys
 - Ce species are not soluble
 - An altered layer forms between CeCCs and substrates during salt spray exposure
 - Impedance initially increases during salt spray exposure
- Overview of protection mechanisms
 - 1. CeCCs are an insoluble barrier between the environment and the substrate
 - 2. During corrosion, a layer containing Ce, Al, and O forms between the coating and substrate
 - 3. Protective oxides deposit on the coating surface and in defects during salt spray exposure

- Primers are protective coatings
 - Promotes paint adhesion
 - Provides corrosion protection
 - ~50 µm thick (2 mils)
- Chromate primers
 - Typically epoxy-polyamide based
 - Strontium chromate or similar inhibitors
 - Protects by dissolution of chromates from primer, transport to site of attack, and reaction to passivate corrosion

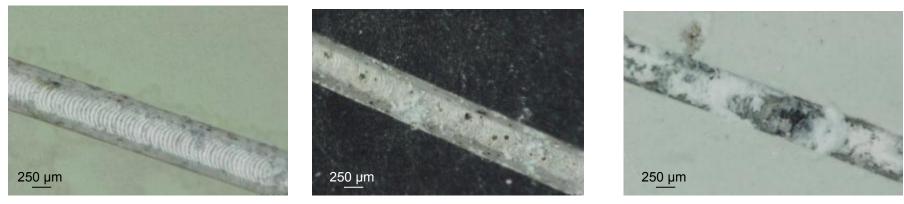



Chromate primer on CrCC after 3000 hours in ASTM B117 salt spray testing

Chromate Alternatives

- Mg-rich primer
 - Licensed and marketed by Azko-Nobel (Aerodur)
 - Protection exceeds chromates in some tests, not sufficient in others
- Electrocoat primers
 - Widely used in automotive (e.g., body in white initiatives)
 - Tank based process for multiple metals
- Multi-functional UV-curable coating (SERDP WP-1519)

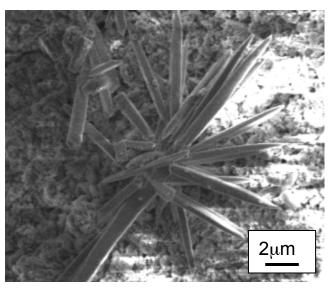
- AI 2024-T3 AI 2024-T3 with Alodine[®] CrCC AI 2024-T3 with a CrCC and model -primer
- Pr-based inhibitors have been developed for primer coatings
- Panels with model primers were prepared by Deft (now PPG Aerospace)
- Inhibitor species were incorporated within the resin/polymer matrix
 - Pr_2O_3
 - Pr_6O_{11}
 - Talc as a control (should be inert)

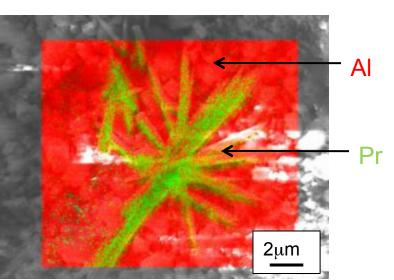


Salt Spray Exposure

- Scribed AI 2024-T3 panels with CrCCs and model primers were evaluated in ASTM B117 salt spray testing for up to 3000 hours
- Coatings were characterized before, during, and after salt spray exposure
 - XRD to identify crystalline phases
 - SEM-EDS to characterize morphology and chemical composition
- Goal was to identify species dissolving, transporting, and reacting

 Pr_2O_3 Primer


Pr₆O₁₁ Primer

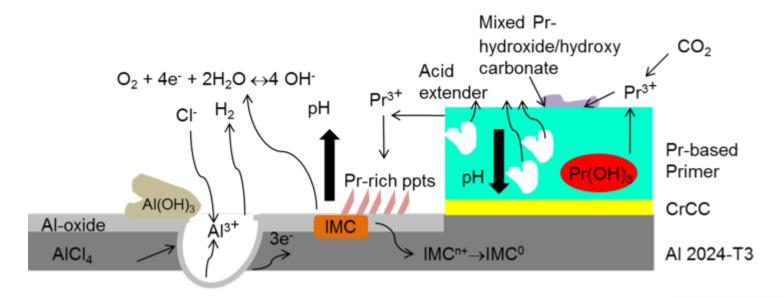

Talc Primer

Pr₂O₃ and Pr₆O₁₁ primers provided corrosion protection, talc primer did not

Scribe following 3000 Hours of Spray Exposure

Element	Atomic %
0	67.46
Fe	3.75
Cu	1.87
AI	15.11
Pr	11.81

Total



EDS identified the major elements present as O, AI, and Pr

100

MISSOURI Son Proposed Protection Mechanism

- Model for primer protection has been developed
- Pr-rich species dissolve from primer matrix containing Pr(OH)₃
- Dissolved species precipitate as Pr-hydroxycarbonates
 - Coating surface and in the scribed area

Overall Summary

- Chromate alternatives are available for aerospace applications
- Cerium-based conversion coatings
 - Deposited by immersion, spray, or electrolytic processes
 - Corrosion protection for up to 336 hours in ASTM B117 salt spray
 - Protects through barrier and interfacial reaction mechanisms
- Pr-based inhibitors for primers
 - Incorporated into current epoxy-polyamide primer bases
 - Corrosion protection up to 3000 hours in ASTM B117 salt spray
 - Protects by dissolution, transport, and reaction
- Rare-earth coatings are promising alternatives to chromates

