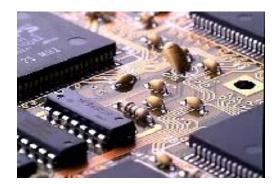


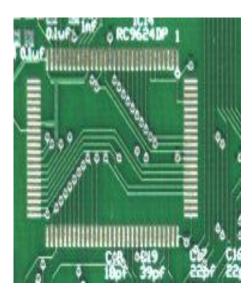
A Successful Industry Collaboration Model to Achieve Toxics Use Reduction



Greg Morose Toxics Use Reduction Institute University of Massachusetts Lowell November 4, 2009

Lead in Electronics

- The printed circuit board is the key component to the manufacture and sales of about \$1 trillion in electronic products each year.
- In the United States during 2003, approximately 13.9 million pounds of lead were used for the manufacture of electronics products and the global use of lead materials in electronics approximately 80 – 90 million pounds globally.

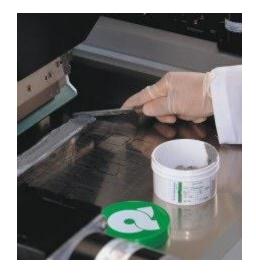

Introduction

Lead can be used in four major areas on printed circuit boards:

 Conductive surface finish on circuit board

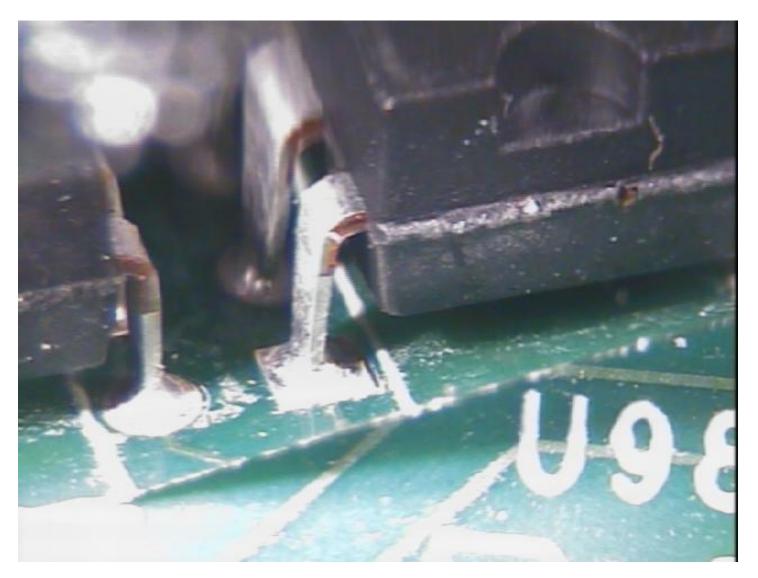
Surface mount components (SMT)

Through hole components (THT)



Introduction

3. Bar solder for assembly of through-hole components



4. Solder paste for the assembly of surface mount components

Lead in Circuit Boards

Human Health Effects

Acute effects of lead exposure:

Brain damage, kidney damage, and gastrointestinal distress occur from acute exposure to high levels of lead in humans. The most sensitive targets for the acute toxic effects of lead are the kidneys and the hematological, cardiovascular, and nervous systems.

Chronic effects of lead exposure:

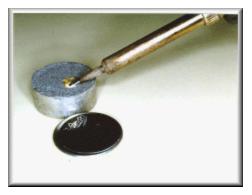
EPA considers lead to be a Group B2, probable human carcinogen. Chronic exposure to lead in humans can affect the blood, reproductive, and the nervous system.

Human Exposure

Human exposure to lead in electronics typically occurs through a combination of inhalation and oral exposure during manufacturing processes, and during improper disposal at product end-of life.

Lead-free Electronics

- Global efforts are underway in the electronics industry to initiate a move towards using lead-free materials for the production of printed circuit boards. These efforts are driven by regulatory (i.e. RoHS) and market drivers.
- Numerous technical challenges remain to hinder the universal implementation of lead-free materials, mostly due to the higher melting temperatures of lead-free solders. As a result, most high reliability electronics products are still currently manufactured and assembled using lead materials.



Lead-free Electronics Industry Challenges

1. Which lead-free solders?

3. Which lead-free component finishes?

4. What process modifications?

2. Which lead-free board

finishes?

Lead-free Electronics Initiatives

- Company specific initiatives
- Industry association sponsored initiatives
- Government/academia/industry partnerships

New England Lead-free Electronics Consortium

Consortium Plan

Objectives:

Design, assemble, and test printed circuit boards using lead-free materials to achieve equal or better solder joint integrity for lead-free electronics assembly as compared to leaded electronics assembly.

Share and disseminate the research results with consortium members as well as the entire electronics industry.

Consortium Members

Project Manager:

Greg Morose, TURI

General Consortium Members

Representatives from industry, government, and academia

Subgroups: Assigned to address specific tasks

- FMEA creation subgroup
- Design subgroup
- Rework subgroup
- Reliability subgroup

Contributions

Contribution	Value
Production equipment and technical support	\$90,000
Analysis and project management	\$185,000
U.S. EPA funding	\$62,000
Engineering support	\$240,000
Testing, inspection, and support	\$245,000
Components and materials	\$195,000
Total	> \$1,000,000

Phase IV Contributors

Consortium Communication

- Bimonthly consortium meetings
- Subgroup meetings (design, rework, reliability)
- Distribution of meeting materials and meeting minutes
- Subgroup documentation and presentation of results
- Surveys
- Workshops and conferences
- Develop papers and articles for submission to electronics publications and electronics conferences
- Presentation at major electronics conferences
- Maintain consortium website

Three Research Areas

 <u>Assembly</u>: Assemble SMT and THT components onto printed circuit boards using LF materials with equal or less defects than TL assembly. Metric: Defects per unit

• <u>**Rework**</u>: Rework involves the removal and replacement of components onto the printed circuit board due to component defect or wear-out.

Metric: Level of copper dissolution

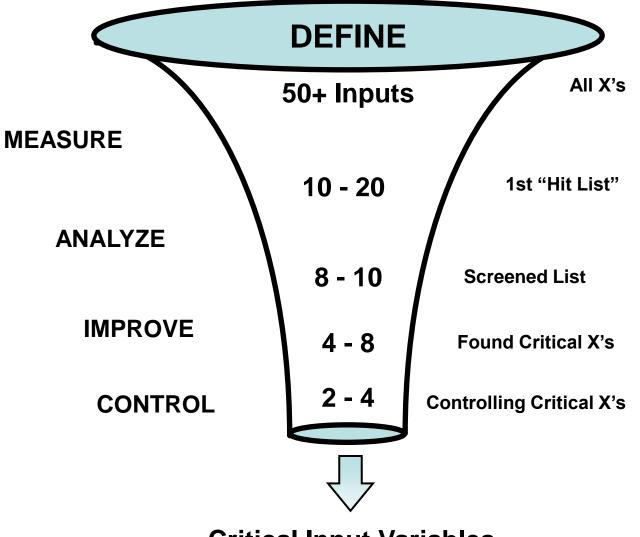
 Long-term reliability: Address issues for lead-free electronics products requiring long product life.

Metric: Number of thermal cycles to failure

Six Sigma Approach - DMAIC

Define	Measure	Analyze	Improve	Control
 Initiate the Project Define the Process Determine Customer Requirements Define Key Process Output Variables 	 Understand the Process Evaluate Risks on Process Inputs Develop and Evaluate Measurement Systems Measure Current Process Performance 	 Analyze Data to Prioritize Key Input Variables Identify Waste 	 Verify Critical Inputs Using Planned Experiments Design Improvement Pilot New Process (Implement) 	 Finalize the Control System Verify Long Term Capability

Problem Solving Approach

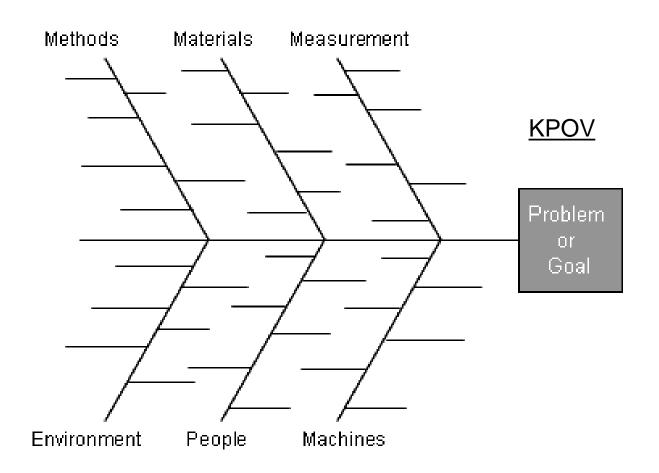

Our Key Process Output Variables (Y's) are determined by our KPIVs (X's). If we know enough about our X's we can accurately predict Y.

$$Y = f(x_{1}, x_{2}, x_{3}, ..., x_{k})$$

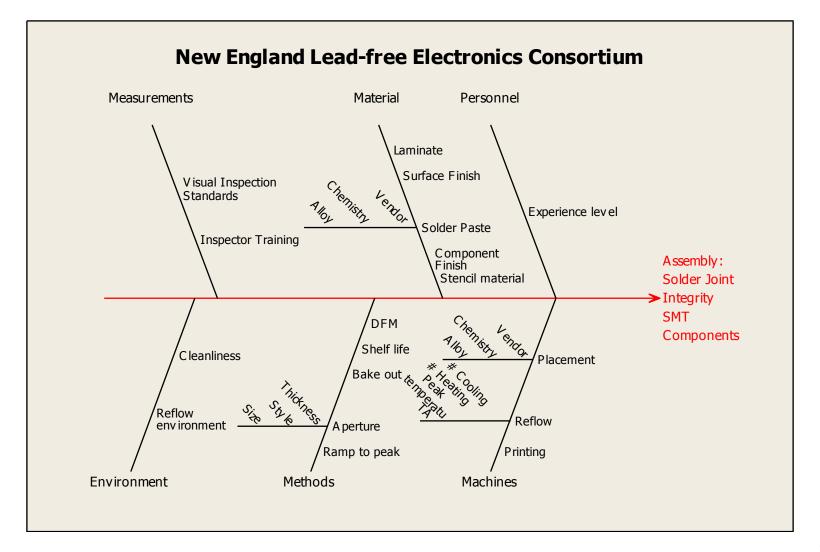
- Y1: Defects per unit (assembly)
- Y2: Copper dissolution (rework)
- Y3: Cycles to failure (reliability)

(Y1) Solder joint integrity/DPU = (reflow profile, solder material, print speed, surface finish, component finish, laminate material, dwell time, solder pot temperature, etc.)

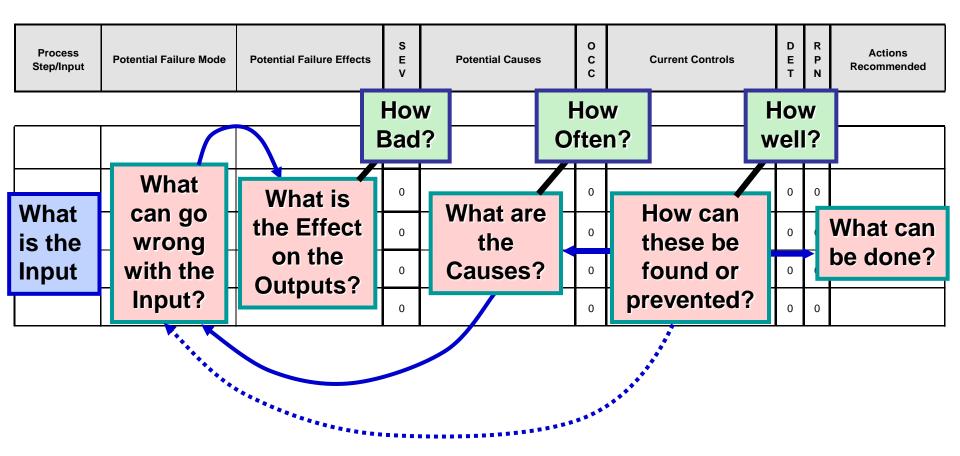
Determine Critical Inputs



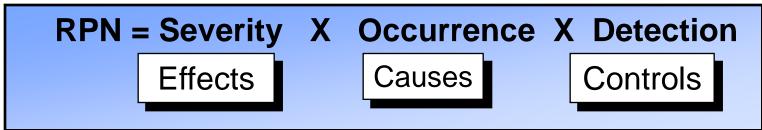
Methods Used to Reduce X's


- Phase I, II, and III experiment results
- Surveys and meetings with technical experts
- Cause and Effect diagrams
- Failure Modes and Effects Analysis (FMEA)

Cause and Effect Diagram


Key Process Input Variables

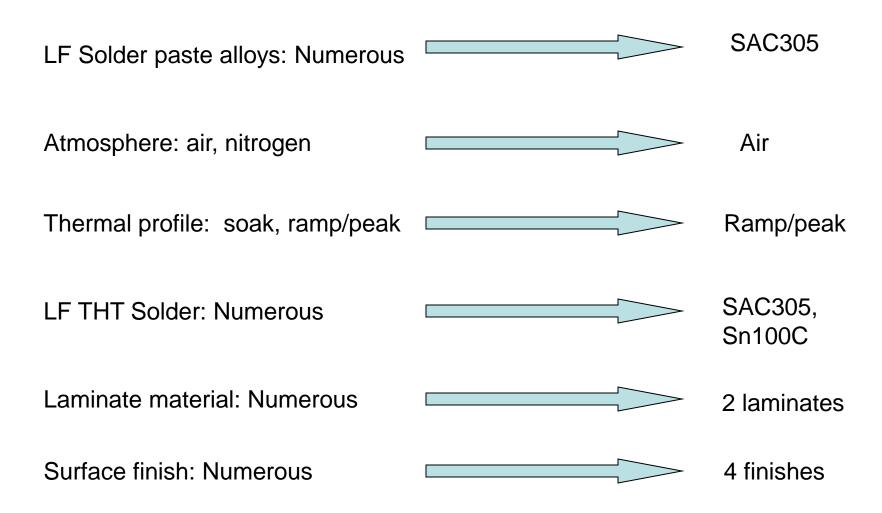
Cause and Effect Diagram



FMEA Overview

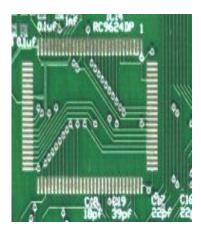
Risk Priority Number (RPN)

- The RPN is an output of FMEA
- The RPN is used assist in the prioritization of items in the FMEA based on three characteristics
 - Severity of the Effects
 - Occurrence of the Causes
 - <u>Detection</u> capabilities of current Controls

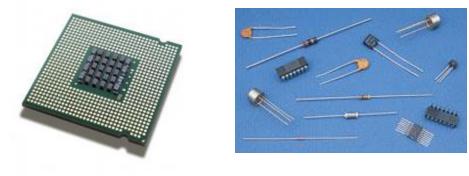

Simple Rating Scale

Rating	Severity of Effect	Likelihood of Occurrence	Ability to Detect
10	Lose Customer	Very high:	Can not detect
9	Serious impact on customer's business or process	Failure is almost inevitable	Very remote chance of detection
8	Major inconvenience to customer	High:	Remote chance of detection
7	Major defect noticed by most customers	Repeated failures	Very low chance of detection
6	Major defect noticed by some customers	Moderate:	Low chance of detection
5	Major defect noticed by discriminating customers	Occasional failures	Moderate chance of detection
4	Minor defect noticed by most customers		Moderately high chance of detection
3	Minor defect noticed by some customers	Low:	High chance of detection
2	Minor defect noticed by discriminating customers	Relatively few failures	Very high chance of detection
1	No effect	Remote: Failure is unlikely	Almost certain detection

FMEA Page 1 of 5


lterr	n No:		Lead Free Sold	ler Pro	cess Process Respon	sibilit	y: TURI Lead Free FMEA	A Group	FI	MEA No:		FMEA)100	Page	:	1/5
Cor	e Team:		TURI Lead	Free G	iroup Issue Date:	Sept	ember 20, 2006 Revision:	9/13/	06 C I	ustomer:			L	ead Fre	e Pro	cess_
FME	A No / Process								F	ollow Up						
No	Failure Mode	CI	Effect	Sev	Cause	Осо	: Process Controls	Det	RPN	I Planned Actions	Date	CAR	Sev	Occ	Det	RPN
Scre	een Printing															
002	Insufficient Pad Coverage per IPC-610 Rev D		Poor print (Insufficient height, Volume)	8	Incorrect aperture size on stencil/Stencil thickness/Equipment parameter print set up	6	AOI/Monitoring paste shelf life/Monitor Solder paste exposure time/Maintenance of the equipment/LSM paste measurements height, volume, Visual Inspection	5	240	Process Owner Specific			8	3	3	72
034	insufficient solder		Poor Print	8	improper precondition of paste/Paste sticking to stencil/Poor Print Parameters;	6	AOI/Monitoring paste shelf life/Monitor Solder paste exposure time/Maintenance of the equipment/LSM paste measurements: height, volume/visual inspection	5	240	Process owner specific			8	3	3	72
035	improper solder print dispensing		Poor print	7	paste problems: clogged tube/old paste/	5	AOI/Monitoring paste shelf life/Monitor Solder paste exposure time/Maintenance of the equipment/LSM paste measurements height, volume, visual Inspection	5	175	Process owner specific			7	3	2	42
Pick	& Place															
004	components fail AOI system with lead free soldering. Balls not seen.		Component rejection (false rejection)	3	vision system not optimized for lead free	7	Optimize Machine for lead free soldering.	2	42	Process owner specific			3	1	2	6
Refl	ow															
023	Ceramic ball grid array solder joint failure/cracking		test failure/latent failures	8	CTE mismatch/Poor CBGA Design/	8	Review CBGA design/Reliability Qualification	9	576	Process Owner Specific			8	4	9	288
028	excess Intermetallic growth		weak solder joint/environmental failure	10	HASL/ Sn Plating with SnCu Ni barrier prevents excess IMC or electroimmersion sn, improper reflow profile	8	Material selection , nickel barrier between tin and copper, witness part analysis, proper reflow profile	10	800	Process Owner Specific			10	2	10	200

Critical X's



Lead-free Materials

1. Conductive surface finish on circuit board

Conductive component finish
 Surface mount components (SMT)
 Through hole components (THT)

- ENIG (nickel, gold)
- OSP (copper)
- Nano (nanosilver, polyaniline)
- HASL (tin/copper alloy)

- NiPdAu (nickel/palladium/gold)
- Sn (tin)
- Au (gold)
- SnAgCu (tin/silver/copper)
- SnBi (tin/bismuth)

Lead-free Materials

3. Bar solder for assembly of through-hole components

- Tin/copper (Sn100C)
- Tin/silver/copper (SAC305)

4. Solder paste for the assembly of surface mount components

• Tin/silver/copper (SAC305)

Test Vehicle

Test Vehicle

- 8" wide x 10" long
- 20 layers
- 0.110 inches thick
- 907 components per test vehicle

SMT Components:

Resistors, BGAs, microBGAs, PQFN, TSSOP, PQFP, MLF, Transformer

THT Components:

Connectors, LEDs, capacitors, DC/DC Convertors, TO220

DOE for Through Hole Component Assembly Results

Y1: Defects per unit (assembly)

X1: Through hole solder (4 different solder/process settings) X2: Surface finish (4 different types)

Design of Experiments:

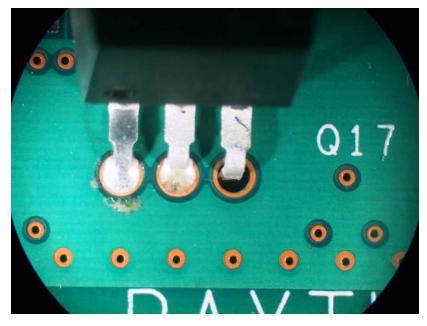
- Full factorial
- 2 replicates
- 2 factors (through hole solder, surface finish)
- 2 replicates x 4 levels of solder x 4 levels of surface finish = 32 test vehicles (runs)

Land-from Tast Vahicles

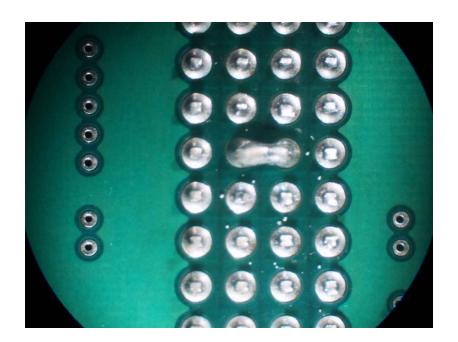
Board	SMT Solder Paste	Through Hole Solder	Surface Finish
1	SAC305 NC-1	SAC305	ENIG
2	SAC305 NC-1	SAC305	ENIG
3	SAC305 NC-1	SAC305	LF HASL
4	SAC305 NC-1	SAC305	LF HASL
5	SAC305 NC-1	SAC305	OSP
6	SAC305 NC-1	SAC305	OSP
7	SAC305 NC-1	SAC305	Nanofinish
8	SAC305 NC-1	SAC305	Nanofinish

Board	SMT Solder Paste	Through Hole Solder	Surface Finish
9	SAC305 (OA)	Sn100C-1	ENIG
10	SAC305 (OA)	Sn100C-1	ENIG
11	SAC305 (OA)	Sn100C-1	LF HASL
12	SAC305 (OA)	Sn100C-1	LF HASL
13	SAC305 (OA)	Sn100C-1	OSP
14	SAC305 (OA)	Sn100C-1	OSP
15	SAC305 (OA)	Sn100C-1	Nanofinish
16	SAC305 (OA)	Sn100C-1	Nanofinish

Lead-free Test Vehicles

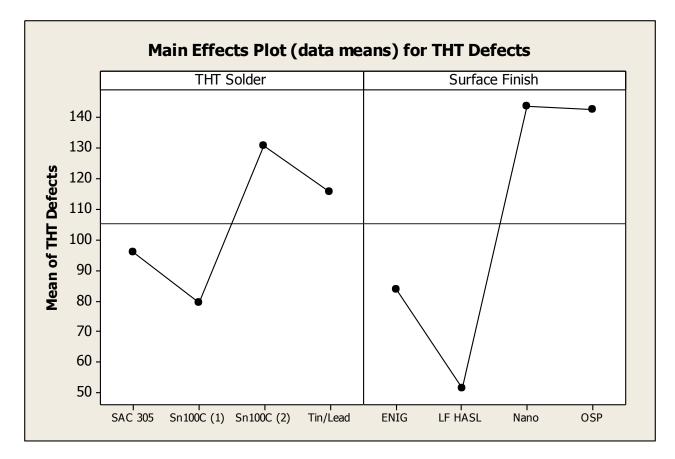

Board	SMT Solder Paste	Through Hole Solder	Surface Finish
17	SAC305 NC-2	Sn100C-2	ENIG
18	SAC305 NC-2	Sn100C-2	ENIG
19	SAC305 NC-2	Sn100C-2	LF HASL
20	SAC305 NC-2	Sn100C-2	LF HASL
21	SAC305 NC-2	Sn100C-2	OSP
22	SAC305 NC-2	Sn100C-2	OSP
23	SAC305 NC-2	Sn100C-2	Nanofinish
24	SAC305 NC-2	Sn100C-2	Nanofinish

Tin/lead Test Vehicles

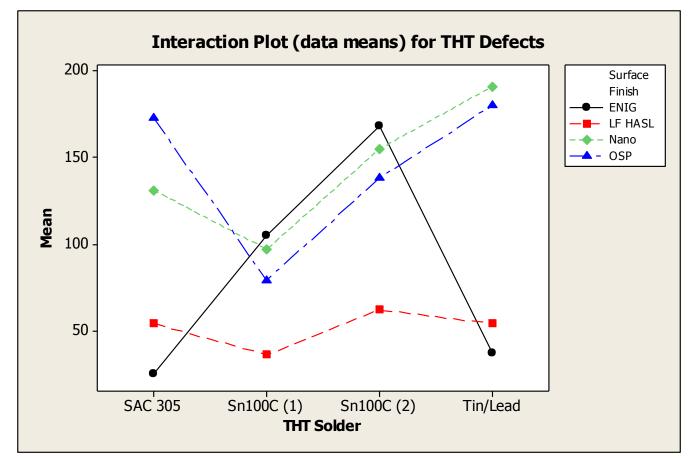

Board	SMT Solder Paste	Through Hole Solder	Surface Finish
25	Tin/lead NC	Tin/Lead	ENIG
26	Tin/lead NC	Tin/Lead	ENIG
27	Tin/lead NC	Tin/Lead	LF HASL
28	Tin/lead NC	Tin/Lead	LF HASL
29	Tin/lead NC	Tin/Lead	OSP
30	Tin/lead NC	Tin/Lead	OSP
31	Tin/lead NC	Tin/Lead	Nanofinish
32	Tin/lead NC	Tin/Lead	Nanofinish

THT Defects

Tin/lead and Lead-free: Most common defects were insufficient solder and solder bridge



TO220, Insufficient solder, Test vehicle 22, Q17


200 pin connector, Solder bridge, Test vehicle 28, J5

Assembly Results: THT Component Main Effects

- Sn100C (1) had the lowest defect rate for all solders
- Lead-free HASL had the lowest defect rate for all surface finishes

Assembly Results: THT Component Interaction

- ENIG surface finish had the lowest defects with SAC305 and tin/lead solders, but had the highest defect rate with Sn100C solder (both settings)
- LF HASL had a low defect rate for each of the four solder types

Consortium Accomplishments

Demonstrated Success:

Demonstrated that lead-free electronics assembly and rework can be done with equal or fewer defects than tin/lead assembly for SMT. Long-term reliability research is still underway.

Leveraged Resources:

Collaborated to share the cost and resources necessary to design, build, and test numerous experimental PCBs

Outreach Beyond Consortium Members:

- Articles
- Technical papers
- Conference and workshop presentations

Consortium Member Benefits

Academia:

Forged collaborative relationships between university and regional businesses.

Provided real world learning opportunities for graduate and undergraduate students.

Increased university faculty experience in applied science and engineering.

Consortium Member Benefits

Government

Reduced the use of a toxic material (lead) which leads to a safer occupational setting and an improved environment.

Improved the competitive position of local businesses by addressing industry challenges in a proactive and efficient manner.

Consortium Member Benefits

Industry

Ability to have input and influence on consortium efforts (e.g. material selection, supplier selection, testing strategies, etc.).

Access to cutting edge research and analysis.

Ability to share the costs to address a major industry challenge.

Forum provided to share ideas and receive advice from industry peers.

Ability to derive competitive advantage for early preparedness.

Individual: Become a knowledge leader within organization.

Thank you.

For any questions, contact:

Gregory Morose, Sc.D. Industry Research Project Manager Gregory_Morose@uml.edu Toxics Use Reduction Institute <u>www.turi.org</u> University of Massachusetts Lowell Phone: 978-934-2954