

Toxics Use Reduction Institute

Hands-on Assistance Improves Services of the Toxics Use Reduction Institute's Laboratory

Jason Marshall, ScD Lab Director TURI Lab 978-934-3133 jason@turi.org

1 University Avenue University of Massachusetts Lowell Lowell, MA 01854-2866

P: 978-934-3275 F: 978-934-3050 www.turi.org

What Has Have We Done

- Providing technical assistance since 1993
 - TUR Lab has helped hundreds of companies find safer alternatives to hazardous cleaning solvents
 - Process specific testing
 - The implementation rate for clients of the lab is three times higher than the national average for technical assistant providers
 - Prior to 2007, 33% of the companies fully adopt the lab's recommendations
 - During past 2 years, near 80%

Technical Assistance

- The goal of the lab is to assist industry in the search for safer cleaning processes
 - By developing and promoting safer alternatives to hazardous solvents
- Free Services to Massachusetts Companies
 - On-site walk through
 - Laboratory Testing
 - Piloting
 - Lab
 - On-site
 - Follow Up Assistance

Alternative Selection

- Process is challenging
 - Thousands of products
 - Different information from different vendors
 - What is right for some may not work for others
- Need for an easier selection method
 - Independent analysis of products
 - Objective operating conditions
 - Process specific final evaluations

Keys to Success

I. Product Selection Process

Helps to 'scope' project more efficiently

• Determine substrate surface/ chemical cleaner reactivity issues

(www.cleanersolutions.org)

Review lab Safety Screening Scores

 Using TURI's CleanerSolutions
 Database for cleaning alternatives

database selection process based on past performance and safety considerations

IV. Actual Product Cleaning Trials Geometries and sizes of parts important to cleaning efficiency

- Duplicate optimal Phase III cleaning condition
- •Duplicate optimal Phase III cleanliness testing Uses client supplied parts

v. Pilot Plant / Scale-up Feasibility Trials Obtain input from employees that will be working on new process

- Identify areas concerns
- •Arrange for lab loaning of equipment for further on-site testing
- •Follow up lab work based on client feedback

${\it II.}$ Temperature and Concentration Trials Chemical field may be narrowed/changed from Phase ${\it I}$

- •Follow chemical manufacturer's recommendations for both parameters
- Equalize time
- Minimize same-source agitation*

*chemical comparison tool; minimal use of mechanical energy; first round of scientific trials; gravimetric analysis; uses test coupons

III. Mechanical Energy Trials

Number of chemical cleaner candidates further decreases from Phase II

- •Application-specific
- Economically-sensitive
- Space-limiting
- •Conduct comprehensive EHS profiles of top performing products

scientific study; may employ a variety of analytical tools for cleanliness evaluation; uses test coupons

TURI Product Selection Phase 1

- CleanerSolutions
- TURI Lab Database of Testing
 - Used to identify safer and effective products
 - Safety Screening Scores
 - VOC, ODP, GWP, HMIS/NFPA, pH
 - Matching Performance
 - Contaminant, substrate, equipment, current solvent

www.cleanersolutions.org

Selecting an Alternative

- When choosing an alternative
 - Don't shift the risk
 - From worker to environment

OR

- From environment to worker
 - Ex. Replacing flammable solvent with a ozone depleting chemical
- Want to select a product that is safer for one or the other
 - Would be best if safer for both

Other Indicators

- Further analysis should be conducted to verify that the selected products are compatible with your process
- Determine if there are any health risks that the screening does not address
- Aquatic Toxicity
- Biodegradability
- Carcinogens, Mutagens or Teratogens
- Concentration
- Disposal
- Endocrine disruptors
- Eutrophication

- Fragrances and Dyes
- Life Cycle Assessment
- Neurotoxins/CNS Depressants
- Packaging
- Recyclability
- Reproductive Toxicity

Review Current System

- Contacted by company with cleaning related issue
- Gather background information on process
 - SSL Test Request form
 - Material of parts to be cleaned
 - Contaminants
 - Current Solvent or other alternatives tested
 - Available Equipment
 - Operating conditions (time, temp, conc.)

Review Current System

- On-Site visit
 - Complete Test Request form
 - Gather samples and MSDS
 - Contaminants
 - Current Solvent
 - Dirty Parts
 - Identify possible adjustments to process

Identifying an Alternative

- The cleaner must be assessed for
 - Ability to remove the contaminants
 - Compatibility with the surfaces to be cleaned
 - Works with equipment that will be used
- The alternative should be safe for the worker and the environment

- Initial laboratory evaluation of alternatives
 - Using basic operating conditions
 - Minimal concentration
 - Short times
 - Little agitation
 - Using coupons matching part substrate
 - Using supplied contaminants
 - Compare with current solvent (if possible)

- Advanced lab evaluation of alternatives
 - Using client specific operating conditions
 - Moderate concentration (if necessary)
 - Times
 - Appropriate agitation (match current equipment)
 - Using coupons matching part substrate
 - Using supplied contaminants
 - Compare with current solvent (if possible)

- Pilot cleaning in lab setting
 - Using client specific operating conditions
 - Using client supplied parts
 - Compare with current solvent (if possible)
 - Send/bring parts to client for assessment

- Pilot testing at facility
 - Using best alternative cleaning products
 - Using operating conditions from lab piloting
 - Modify conditions if necessary
 - Set up piloting off-line from current system
 - Compare pilot cleaned parts with current system for parts from the same manufacturing lot
 - Get end user input for performance

TURA Work in MA SSL Testing (1993-2003)

- Worked with 21 companies trying to replace TCE in cleaning applications
- A wide range of industries were represented
 - Aircraft
 - Electronics
 - General Mfr
 - Metal working
 - Optical
 - Plating

- Conducted over 100 experiments
- 11 Contaminant types
 - Abrasives
 - Buffing Compounds
 - Coatings
 - Fluxes
 - Grease
 - Inks
 - Paints
 - Cutting Fluids
 - Lubricants
 - Oils
 - Waxes

TURI Summary of Alternatives Testing to TCE

- 21 Vendors
- 44 Products
- 11 Product Types

Class	# of Products
Alkaline Aqueous	23
Caustic	1
Ester	3
HCFC	1
Neutral Aqueous	2
Organic	1
Petroleum Distillate	3
Semi-Aqueous	2
Terpene	5
Terpene-Organic	1
Terpene-Semi-Aqueous	2

EPA Grant to Replace TCE & Chlorinated Solvents

- Two year grant 2003-2005
 - Conducted with MA Office of Technical Assistance
 - Help small companies move away from TCE & chlorinated solvents in vapor degreasing
- Work focused on drop-in substitutes
 - Due to capital investment of large closed looped systems
 - Gathered EH&S data for
 - TCE and other chlorinated solvents
 - The chemical classes of the substitutes for comparisons
 - Article in Process Cleaning Magazine on Drop In Alternatives
 - Sept/Oct issue
 - http://www.processcleaning.com/

SSL Testing (2003-2005)

- 8 companies trying to replace TCE/ Chlorinated Solvents in cleaning applications
 - Six joint site visits by OTA and TURI
 - Two site visits by TURI
- A wide range of industries are represented by these companies
 Conducted over 70 experiments
 - Aircraft
 - Electronics-Ceramic
 - Jewelry
 - Metal working job shops
 - Tool
 - Capacitors
 - Wire & Cable

- 8 Contaminant types
 - 5 Contaminant type
 - Buffing
 - Coating
 - Grease
 - Ink/Paint
 - Mold Release/Silicone
 - Oil
 - Resin/Rosin
 - Waxes

EPA Funding in RI 2006-8

- Workshop Fall 2006
 - Worked with 13 companies
 - On-site testing for 6
- Second Grant 2007-8
 - Worked with 8 companies

RI Parts Cleaned

Ira Green - Background

- 270 employees Products consist of metal pieces for the DoD
 - Military unaware of TCE use in metal finishing operations
- Used 12,500 pounds of TCE in 2004
- When EPA contacted Ira Green, the company was very close to exceeding permit limitations
- Already had enforcement action against them by the RI DEM 2003 and 2004

Ira Green – Finding an Alternative

- EPA collected parts for TURI to test
- Set up a test tank in Ira Green's facility
 - Determined that alternative solution works as well as TCE
 - TURI provided free gallon of alternative solution

Ira Green Summary

- One product line completely converted to aqueous cleaning
- Installed additional soap cleaning tanks in plating area
- Have done enough hands on shop floor testing to know they can effectively clean 95-100% of all products
- Now working through the logistics, material handling, and queue/work in process issues to make a total conversion
- Critical to process
 - Clean as soon as possible after polishing
 - Very concerned about drying, watermarks or staining

Three A's - Background

- Small, family-owned job shop – 4 employees
- Owner wanted to stop using TCE because of associated health risks
- Used approximately 55
 gallons (~690 pounds)/
 year at a cost of about
 \$1000

Three A's – Finding an Alternative

- EPA collected parts for TURI to test
- Needed to find an alternative process that would maintain an antique finish on metal parts
- An alternative was found that will allow Three
 A's to retrofit current degreaser with an
 immersible transducer, saving money on
 equipment costs
- Switched to a Steam Cleaner
 - Eliminating TCE from their plant

Overall TCE Reduction

- All Companies from 1993-2008
 - 46 companies
 - Used 297,300 lbs
 - Reduced 195,200 lbs
 - 66% reduction
- RI 2006-7
 - Used 24,500 lbs
 - Estimated reduction 12,500 lbs
 - 51% reduction
- RI 2007-8
 - Used 26,000 pounds/year
 - Reduction to less then 7000 pounds/year
 - 75% of the reported TCE usage

Summary

- Lack of adoption by companies receiving lab testing only shows the importance of providing on-site assistance
 - 30% adoption rate
- By conducting the on-site work, questions or concerns can be met in real time, facilitating a successful adoption of safer cleaning practices
 - 80% adoption rate
- Lessons learned from RI project can easily be applied to other areas with concentrated industry regions