

Saving Water with WaterSense

Tara O'Hare U.S EPA WaterSense

November 8, 2021

Introducing WaterSense

WaterSense is a voluntary program launched by EPA in 2006 that provides a simple way to identify water-efficient:

- Products
- Programs
- Practices
- Homes

Products are independently certified for water efficiency <u>and</u> performance

WaterSense Labeled Products

More than **37,000** product models have earned the label. Water factors are included in many **ENERGY STAR** certified products.

Flushing Urinals

Showerheads

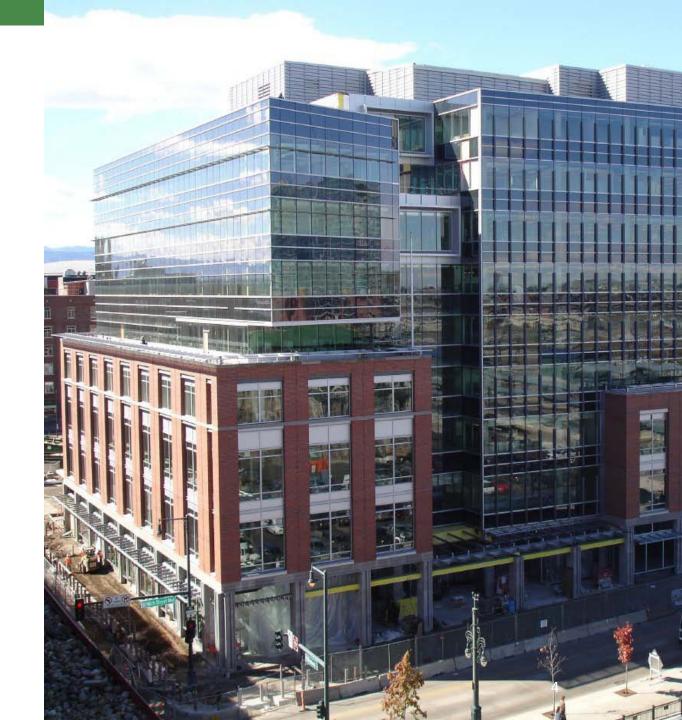
Lavatory Faucets

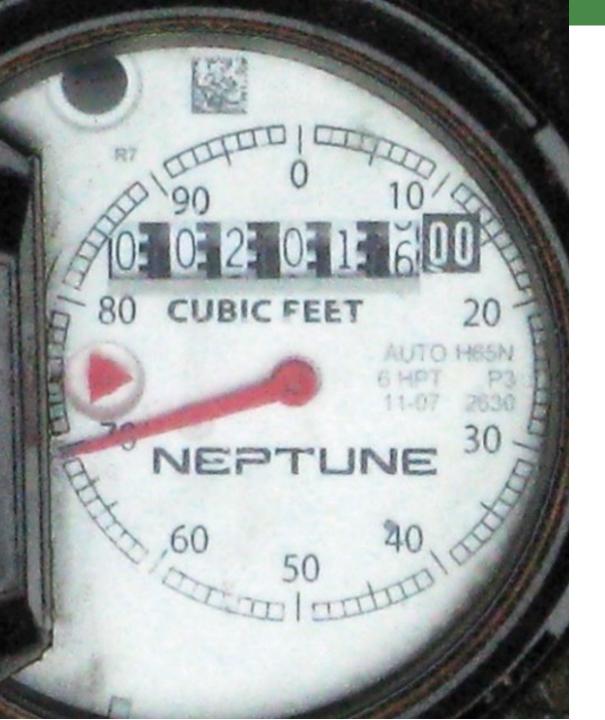
Homes

Flushometer Valve Toilets

Tank-Type Toilets

Irrigation Controllers


Spray Sprinkler Bodies



Just Add Water

- O&M procedures & procurement policies
- Water-efficiency in all subcontracts and service contracts
 - Make vendors aware of goals
 - Add best practices to all O&M contracts
 - Conduct regular system audits with leak detection and repair
- Track water in Portfolio Manager
- Find rebates Contact your water, energy, and gas utilities

Submetering

Don't wait for the bill to see problems

Submeter specific end uses for data on-demand

- Submeters <u>do not</u> need separate utility accounts – can be internal use only
- Consider temporary flowmeters or other water monitoring devices like acoustic leak detection
- Set up alerts to quickly identify leaks and equipment inefficiencies or malfunctions

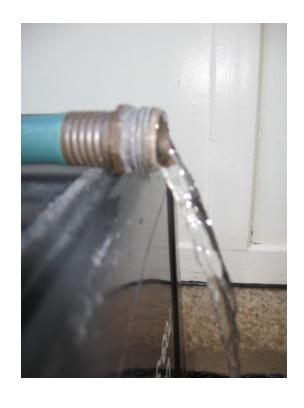
Submeter any system using more than 1,000 gal/day or 100,000 gal/year – tenant spaces, irrigation systems, cooling towers, single-pass cooling systems, rainwater systems

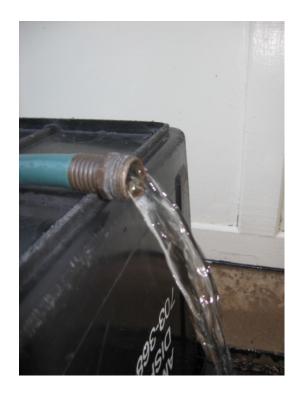
Leak and Waste Indicators

- Spikes in water usage found with monthly bill tracking or meter reading
- Problems and malfunctions found during a water assessment or equipment inventory
- Alerts from leak detection or failure abatement devices
- Walk-through of facility identifies leak puddles, drips, running fixtures, discharge to floor drains
- Reports from employees, visitors, or tenants

Leaks Add Up Fast!

Leak Water Loss Guide (Water Loss in Gallons at 50 PSI)


Leak this Size	Loss per Day	Loss per Month	Loss per Year	\$ 34 per month,
•	120	3,600	43,200	
•	360	10,800	129,600	\$ 403 per year
•	693	20,790	249,480	
	1,200	36,000	432,000	
	1,920	57,600	691,200	
	3,096	92,880	1,114,560	
	4,296	128,880	1,546,560	
	6,640	199,200	2,390,400	¢4 057 nor month
	6,984	209,520	2,514,240	\$1,957 per month \$23,483 per year



Source: Washington State Department of Health Office of Drinking Water, costs estimated based on national average rate of \$9.34 per 1,000 gallons

Stop Sending Money Down the Drain

1 gpm 500,000 gal/year \$4,670/year*

2 gpm 1,000,000 gal/year \$9,340/year*

6 gpm 3,000,000 gal/year \$28,020/year*

Involve Employees

Train custodial staff to identify and fix leaking or malfunctioning fixtures and equipment

Post signage in restrooms and kitchen areas with:

- water saving factoid or call to action
- contact info for repairs
- instructions for using new technologies
- reminders to shut off equipment between uses

REPORT WATER LEAKS

One leaky faucet can waste the equivalent of 7,881 one liter bottles per year!

Call for free repairs:

Medical Center Campus (415) 353-1120 (415) 476-2021

LivingGreen

Involve Employees

Add specific tasks to existing routines:

- Property or Facility Manager
 - Check the meter during off-hours movement can be a leak
 - Look for water running to floor drains near equipment (ex. water heater, boiler, etc.) running water may be a leak
- Cleaning Staff
 - Report dripping or clogged faucets and showerheads
 - Tank-type toilets small ripples at the edge of the water in the bowl can be a leaky flapper

Involve Employees

Add specific tasks to existing routines:

- Landscaping staff/contractors
 - Puddles and watering hardscape = waste
 - Look for broken sprinkler heads, dead plants, and other strange looking things
- Kitchen staff
 - Shut-off equipment between uses, especially food disposals
 - Steam leaking from equipment wasted water and energy

Water Savings in Restrooms

Restrooms can be a significant water use

Older fixtures installed before 1994 use 3-5 times more water than newer efficient models

- Water savings depend on user behavior just like energy
- Regular maintenance is vital –
- Annually inspect valves and replace worn parts
- Adjust automatic sensors on fixtures to avoid double or phantom flushes and faucets running too long
- Regularly remove scale build-up and biofilm on all fixtures especially faucets and showerheads

Verifying Water Use in Restrooms

Tank-type toilets – Dye Tablets or food coloring

- Drop tablets into the tank and wait 10 minutes
- Dye color in the bowl = leaky toilet flapper

- Count the number of seconds that elapse during flush cycle time
- Multiply seconds by 0.42 for toilets and 0.25 for urinals to get gallons per flush

Faucets and Showerheads – Timed Flow Test

- Use a flow-gauge bag or a measuring cup or pitcher of a known volume to measure volume of flow per unit of time
 - Faucets use one marked in cups or pints
 - Showerheads use one in quarts or gallons

* South Florida Water Management District Water Efficiency and Self-Conducted Water Audits at Commercial and Institutional Facilities Guide https://www.sfwmd.gov/documents-by-tag/waterefficiency

Water Efficient Restroom Fixtures

	Private Restroo or Patient Roo		Public Restrooms				
Toilets	Tank-type ≤ 1.28 gpf	A STORE EPA CITO	Flushometer Valve ≤ 1.28 gpf				
Faucets/Laminar Flow Devices	Lavatory ≤ 1.5 gpm	Sols EPA Cito	0.5 gpm OR 0.25 gpc				
Showerheads		≤ 2.0	gpm Sater Sense EPA Critic				
Urinals	Flushing Urinals ≤ 0.5 gpf						

Target Mechanical Systems

- Mechanical systems can account for up to 30 - 60% of water use
- Submeter systems and check for leaks and inefficiencies – especially hot water and steam
- Minimize water use in singlepass cooling systems
- Maximize cooling tower cycles of concentration

Single-Pass Cooling

Single-pass or once-through cooling systems use water to remove heat and cool equipment

Uses 40 times more water than a cooling tower

Types of equipment that could use single-pass cooling include:

- Ice machines
- Refrigeration systems
- Vacuum systems

- Air conditioners
- Air compressors

Single-Pass Cooling Efficiencies

Maximize efficiency of existing systems

- Use minimum flow rate required for cooling set by manufacturer
- Install a control valve to turn off cooling water when there is no heat load – standby mode
- Regularly check operation of the water control valve
- Recirculate water by connecting cooling lines to existing chilled water loops

In the long-run eliminate single-pass cooling systems

- Replace with air-cooled equipment
- Reuse water in a closed-loop recirculation system

Cooling Towers

Cooling towers can be **30-60**% of total facility water use

- High energy use to pump water continuously
- Evaporation is not the target for water efficiency
- Monitor water chemistry and flow
- Maximize cycles of concentration

Cooling Tower BMPs

Main goal: maximize cycles of concentration

Cycles of concentration is an indicator of the number of times water can be recirculated in the system before it's discharged to the sewer

- Limited by the concentration of minerals in the water often measured by a conductivity meter - can lead to scaling and mineral build-up
- Increasing cycles from 3 to 6 reduces make-up water by 20% and blowdown water by 50%
- Install submeters on the make-up and blowdown lines to monitor flow
- Ensure cooling tower fill valves cut off cleanly
- Choose a water treatment vendor that specializes in water efficiency
- Read water chemistry reports to verify progress toward goals
- Use make-up water submeter to measure evaporation losses to request a sewer credit
 from your utility

Outdoor Water Use

- Community benefits
- Minimize amount of water need to supplement rainwater to meet plant watering needs
- Landscape and irrigation service agreements should include:
 - Water efficiency goals
 - Requirements for local water restrictions
- Existing staff can attend courses or seminars to learn waterefficient techniques

Irrigation

Water losses from wind, evaporation, and overwatering caused by:

- Poor irrigation system design
- Improper system installation and management
- Lack of maintenance
- Improper scheduling

Find Outdoor Water Waste

 Check the system for broken or clogged sprinkler heads

 Make sure sprinkler heads do not tilt too high or too low

 Move or adjust sprinkler components to avoid watering pavement

Look for pooling and puddling

Audit your irrigation system
 using an irrigation professional
 certified by a WaterSense
 labeled program every 3 years

https://www.epa.gov/watersense/irrigation-pro

WaterSense Resources

- Water use information by facility type
- Best management practices
- Water-saving tips
- Assessment tools
- Worksheets and checklists
- Live and recorded training webinars
- Case studies and more!

Tools for Getting Started

WaterSense Simple Water Assessment Checklist

Writable PDF to help quickly identify and target potential projects and best management practices

WaterSense Operations and Maintenance Checklist

Checklist of low- or no-cost changes to operation and maintenance procedures can start saving water, energy, and costs quickly.

Sample Worksheets in Appendix B of WaterSense at Work

Building Water Survey, List of Water Meters, Water Consumption History; Equipment and Water Use Inventory

WaterSense Commercial Facility Leaks Checklist

PDF checklist to help quickly identify leaks and potential water waste

O&M Checklist

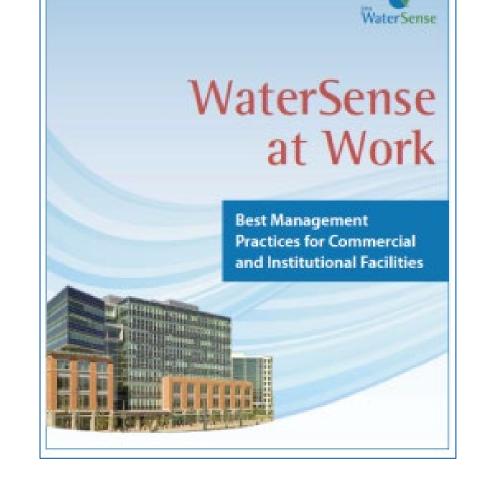
Tips to Identify and Address Potential Water Waste	Section of WaterSense at Work ¹	Done ✓	Notes
SANITARY FIXTURES			
10. Post signs in restrooms to instruct users to report leaks and continuously flushing fixtures.	3.2 – 3.4		
11. Tank-type toilets: Check tank-type toilets regularly for leaks, broken flappers, and other parts failures. Annually test toilets using a dye test to ensure the flappers are not worn or allowing water to seep from the tank into the bowl and down the sewer. Drop a dye tablet or several drops of food coloring in the tank. After 10 minutes, see if the dye has leaked into the bowl, which indicates a leak. Flush immediately.	3.2		
12. Check the toilet fill valves for water overflow to make sure fill valves are not running constantly.	3.2		
13. Flushometer-valve toilets and urinals: Inspect diaphragm or piston valves annually and replace any worn parts. To determine if the valve needs replacement, time the complete flush cycle. A properly functioning flushometer valve toilet should not have a flush cycle longer than four seconds for a 1.6 gallon per flush (gpf) valve and three seconds for a 1.28 gpf valve. A urinal flush cycle should be completed in three seconds for a 1.0 gpf valve and two seconds for a 0.5 gpf valve. If longer, check the flush volume adjustment screw or consider replacing the valve or valve insert.	3.2 – 3.3		
14. Periodically check to ensure the control stop (which regulates the flow of water from the inlet pipe to the flushometer valve) is set to fully open during normal operation.	3.2 – 3.3		
15. Periodically inspect the flush volume adjustment screw to ensure the flush volume setting has not been modified from the original settings to use more water per flush than needed.	3.2 – 3.3		
16. If replacing valves or valve inserts, make sure the new ones are consistent with the manufacturer's specifications. Ensure the rated flush volume matches the acceptable range for the fixture.	3.2 – 3.3		

Best Management Practices

WaterSense at Work: best practices for all buildings

Water management planning

Water use monitoring and user education


Sanitary fixtures, kitchen equipment

Outdoor water use, Mechanical systems

Lab & medical equipment

Onsite alternative sources of water

https://www.epa.gov/watersense/bestmanagement-practices

Water Wednesdays

Register at: www.energystar.gov/buildings/training

Controlling Water Waste Across Commercial and April 20th

Institutional Properties Everywhere

Beat the Peak – Using Water Wisely for Commercial June 30th

Outdoor Spaces

EPA's 1-100 Water Score for Multifamily Buildings

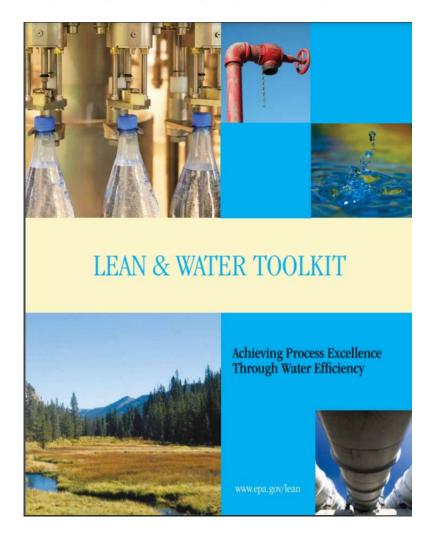
July 14th

Saving Water in Restrooms August 25th

Minimizing Water Use in Mechanical Systems Sept 15th

Conducting Water Assessments October 20th

Quick Water Wins - Operation and Maintenance Projects November 2nd


Evaluating Water Use in Capital Improvement Projects December 8th

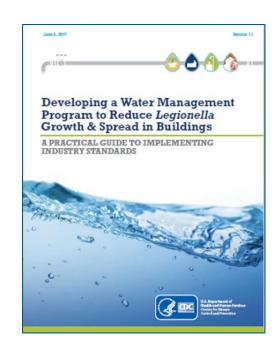
EPA's Lean and Water Toolkit

- Created to help with any industrial facility type
- Covers
 - value stream mapping
 - gemba walks
 - developing a water balance
 - kaizen events
 - root cause analysis
 - case studies and more

COVID-19 Resources

Buildings may need to flush their water system before reopening

 CDC Guidance for Reopening Buildings after Prolonged Shutdown or Reduced Operation


www.cdc.gov/coronavirus/2019-ncov/php/building-water-system.html

- CDC Prevention through Water Management includes toolkit <u>www.cdc.gov/legionella/wmp/index.html</u>
- EPA Guidance on Information on Maintaining or Restoring Water Quality in Buildings with Low or No Use – includes checklist

<u>www.epa.gov/coronavirus/information-maintaining-or-restoring-water-quality-buildings-low-or-no-use</u>

 AWWA and IAPMO. Responding to Water Stagnation in Buildings with Reduced or No Water Use

<u>www.awwa.org/AWWA-Articles/new-guide-addresses-stagnant-water-in-buildings-with-low-occupancy</u>

Department of Energy Better Buildings, Better Plants Program

Water Savings Network

Free program where participants are encouraged to set water use intensity goals for all or a part of their portfolio (e.g., in water-stressed regions), and contribute by:

- Track and share water savings progress
- Publish a case study
- Share best practices and lessons learned through peer exchanges, or
- Document the ways water efficiency impacts other priority areas such as energy reduction, resilience, equity, and workforce development

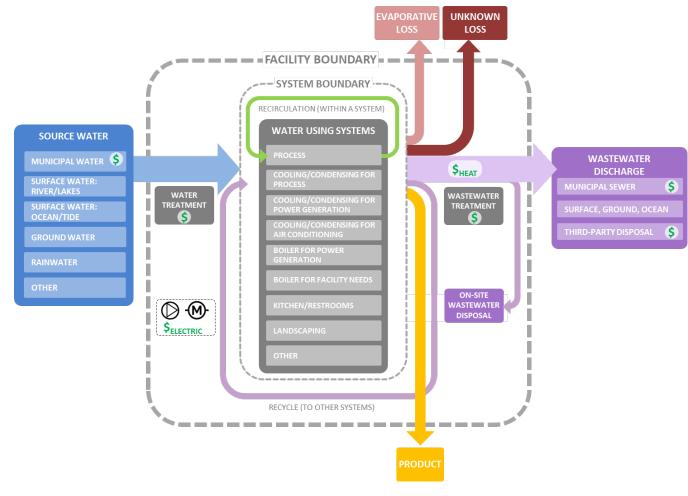
https://betterbuildingssolutioncenter.energy.gov/better-plants/industrial-water-savings-network

Examples of Technical Assistance: Water INPLT Training

Water INPLT training leveraged by PWP Tool aims to help manufacturing plants:

- Perform a water balance and establish a water baseline
- Identify the true cost of water at the facility
- Identify water efficiency opportunity at the facility through a water treasure hunt process

A 2.5 day event (classroom plus field training)


Recordings from the virtual water INPLT training is available online: https://bptraining.ornl.gov

Plant Water Profiler (PWP) Tool

- Free, Excel- based tool for facility level water assessment
- Helps systematically determine baseline water use and true cost
- Streamlines data collection
- Provides summary report containing high level recommendations

https://www.energy.gov/eere/amo/plant-water-profiler-tool-excel-version-10-pwpex-v10

Part 1.1 - Industry and Contact Information

Please provide details about the plant and contact information. Enter relevant information in yellow cells. Select industry subsector from the first drop-down list, and then industry type from the next drop-down list.

Corporation Name:	ABC Dairy Products Manufacturing Company	Primary Contact	for Assessment:
Plant Name:	XYZ Plant	Name:	John Doe
Location:	Cleveland, Ohio		123 Street
Primary Product:	Cultured Dairy Products	Address:	Mailstop 2345
Industry Subsector and NAICS	211 Food Manufacturing		Cleveland, Ohio 44101
3-Digit Code:	311. Food Manufacturing	Phone:	XXX-XXX-XXXX
Industry Type and NAICS 5-	21151 Dainy Broduct (eyeant Frazen) Manufacturing	Fax-No:	XXX-XXX-XXXX
Digit Code:	31151. Dairy Product (except Frozen) Manufacturing	E-mail:	abc@email.com
Specify if other:			
Plant's Safety Protocol:			
Specific Problems or Ideas of			

The North American Industry
Classification System (NAICS) is the
standard used by Federal statistical
agencies in classifying business
establishments for the purpose of
collecting, analyzing, and publishing
statistical data related to the US
business economy.

Search Industry by NAICS Code

Part 1.2 - Plant's Annual Hours of Operation

Please provide plant's annual hours of operation. You may list different departments of the plant (e.g., administration office) separately, if their hours of operation are different.

Department	Normal Hours of Operation per Year	Downtime Hours per Year	Actual Hours of Operation per Year	Comments	
Plant	8,760	72	8,688	2 12-hr shifts; 6 hr/mo. downtime	
Administration Office	2,000		2,000	8 hr/day, 5 day/wk, 50 wk/yr	
			_		

Interest related to Plant's

Water Use:

Part 1.3 - Annual Production Information Product Annual Production Comments 1,000 | lb Comments Cottage Cheese 400.0 Sour Cream 300.0

Part 1.4 - Water-Using Systems Utilized in the Plant

TOTAL

Please indicate which water-using systems are present in your plant. Select systems that are present; this will activate corresponding rows in this table and throughout the tool. Enter the name of the system in yellow cells where highlighted.

700.0

Water-U	Comments		
	V	Process 1	
Process:			
	V	Process 1	
Cooling Tower for:	~	Air Conditioning	
Boiler for:	~	Facility Needs	
boiler for:			
Kitchen and Restrooms	~		
Landscaping and Irrigation	~		
Other System:			
Onsite Water Treatment	~		
Onsite Wastewater Treatment	~		

You may specify up to:

- 3 processes (e.g., based on product type or subprocess), if you wish to analyze them separately;
- 3 **cooling tower systems** (e.g., for separate cooling/condensing loads, such as process, power generation, and air conditioning);
- 2 **boiler systems** (e.g., for separate heating loads, such as power generation, and facility needs).

Specify cooling tower and boiler systems separate from processes and water-using systems they serve.

Part 3.1 - Process Water Use

This table calculates process water use in the plant. You may describe multiple applications for a process (e.g., product type or subprocess). Please select the process and enter required data in the highlighted cells.

			Process Water					Total (Million Gallon per Year)				
Process Application	Water Required for Processing	Process Water Consumed in Product	Losses (Evaporation/ Other)	Production Units per Year	Hours Water Used per Year	Fraction of Gross Water Use Recirculated	Gross Water Use	Source Water + Water from Other Systems	Wastewater Discharge + Recycled to Other Systems	Process Water Consumed in Product	Process Water Losses (Evaporation/ Other)	Recirculated Water
	Gallon per	Fraction of						Incoming	Outgoing (Leaving the System)			
	Production Unit	Incoming Water						incoming	Outgo	onig (Leaving the by	sterrij	
Process: Process 1	3.2			1,500,000.0		0.2	4.8	3.84	3.84	-	-	0.96
Process: Process 1	2.0	0.25		1,500,000.0			3.0	3.0	2.25	0.75	-	-
							-	-	-	-	-	-
							-	-	-	-	-	-
							-	-	-	-	-	-
							-	-	-	-	-	-
Aggregated Results												
Drocoss: Drocoss 1							7.0	6.94	6.00	0.75		0.96

Aggregated headts						
Process: Process 1	7.8	6.84	6.09	0.75	-	0.96
_	-	-	-	-	-	-
-	-	-	-	-	-	-

Part 3.2 - Cooling Tower Water Use

This table calculates cooling tower water use in the plant. Please select the applicable cooling/condensing system and enter required data in the highlighted cells.

For "Load (Fraction of Chiller Tonnage)," the typical range is 0.5-0.8. For "Evaporation Rate per 10°F Temp. Drop," 0.85% is a typical value, and the typical range is 0.65% for moist climate to 1.0-1.2% for dry climate. For "Temp. Drop Across Cooling Tower," typical range is 10-15°F. For conductivity, first select "Conductivity Unit" from the drop-down list on the right and then enter data below.

Load Factor Evaporation Rate Temp. Drop

Makeup Water

Blowdown

Million Gallon per Year (% of Gross Wa

Cooling Tower	Operation per	Tonnage	(Fraction of	per 10°F Temp.	Across Cooling	Conductivity	Conductivity	Gross Water Use	Cross Water Lies Incoming		Outgoing	
	Year	Tollilage	Tonnage)	Drop (%)	Tower (°F)	μS/cm	μS/cm	Gross Water Use	Makeup Water	Blowdown	Eva	
Cooling Tower for: Process 1	2,912	250	0.8	0.85%	10	600	1,800	105 (100%)	1.34 (1.28%)	0.446 (0.425%)	0.89	
Cooling Tower for: Air Conditioning	2,000	75	0.78	0.85%	10	600	1,800	21.1 (100%)	0.269 (1.28%)	0.0895 (0.425%)	0.17	
								-	-	-		
								-	-	-		
								-	-	-		
								-	-	-		
Aggregated Results												
Cooling Tower for: Process 1								105 (100%)	1.34 (1.28%)	0.446 (0.425%)	0.89	
Cooling Tower for: Air Conditioning								21.1 (100%)	0.269 (1.28%)	0.0895 (0.425%)	0.17	
-								-	-	-		

Part 3.3 - Boiler Water Use

This table calculates boiler water use in the plant. Please select applicable water systems and enter required data in the highlighted cells.

Hours of

"Steam Generation Rate per Horsepower" is 34.5 lb/h at 212°F. For conductivity, first select "Conductivity Unit" from the drop-down list on the right and then enter data below.

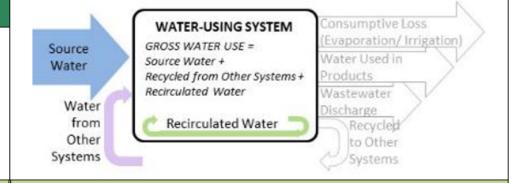
		Hours of	Boiler		Steam	Feedwater	Makeup Water	Blowdown		Million Gallon per Year (% of Gross Wa				
	Boiler	Operation per Year	Horsepower (BHP)	Load Factor (Fraction of BHP)	Generation Rate		Conductivity	Conductivity	Feedwater	Makeup Water	Blowdown	Ste		
		Tear	(BHF)		(ib) ii) per brir	μS/cm	μS/cm	μS/cm		Incoming	Outgoing			
В	oiler for: Facility Needs	2,912	500.0	0.78	34.5	450	600	5,500	5.12 (100%)	3.84 (75%)	0.419 (8.18%)	3.4		
									-	-	-			
									-	-	-			
									-	-	-			
									-	-	-			
	 Disclaimer Getting Started Co 	oncept 1.Plan	t Info 2.Plar	nt Water Intake&	Discharge	3.Water Use Ca	Iculations 4	.System Water B	alance 5.Un	it Costs 6.5	(+) : 🚺			

Part 3.4 - Kitchen and Restrooms Water Use

This table calculates sanitary water use in the plant. You may describe multiple employee groups based on work hours. Please select the rows and enter required data. For "Water Use per Employee," a typical range is 10-35 gallon per shift. The lower value is used when there are just toilets. A higher value is used where there are toilets, showers, and full kitchen services (e.g., food preparation and dishwashing).

Description	Number of Employees	Workdays per Year	Daily Water Use per Employee (Gallon)	Gross Water Use (Million Gallon per Year)
Plant	150	250	30.0	1.125
Core Operations Building	25	365	30.0	0.274
				-
				-
				-
				-
TOTAL	1.399			

Part 3.5 - Landscaping and Irrigation Water Use


This table calculates irrigation water use in the facility. You may describe multiple irrigated land areas or combine them as one area. Please select the rows and enter required data. Please provide an estimate based on incoming water from (a) sources identified under Part 2.1 and (b) water-using systems in the plant.

Description	Area of Land Irrigated (sq ft)	Inches of Irrigation Water per Year	Gross Water Use (Million Gallon per Year)						
Lot A	68,000	36.0	1.525						
Lot B	10,000	52.0	0.324						
			-						
			-						
			-						
			-						
TOTAL	TOTAL								

Part 4.1 - System Gross Water Use

For EACH water-using system, please provide an estimate of water use originating from different paths. **Note:** You may use values in the purple cells, which were calculated in previous tabs, as a guide for your estimates in yellow cells, as shown below:

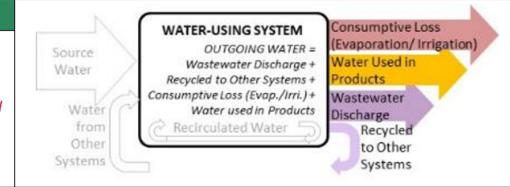
* Use calculated <u>Incoming Water (Source Water + Water From Other Systems)</u> for user estimate for <u>Source Water</u> and <u>Water From Other Systems</u>.

		Water Flows Calculated on Tab 3 (Million Gallon per Year)			Water Use (Measured or Estimated) (Million Gallon per Year)			
Water-Using System	Incoming Water (Source Water + Recycled From Other Systems)	Recirculated Water	Gross Water Use	Incomir Source Water	Recycled Water From Other Systems	Recirculated Water	Total (Gross Water Use)	
Process: Process 1	6.84	0.96	7.8	6.8		0.96	7.76	
-	-	-	-				-	
-	-	-	-				-	
Cooling Tower for: Process 1	1.337	103.495	104.832	1.3		100.0	101.3	
Cooling Tower for: Air Conditioning	0.269	20.791	21.06	0.3		20.79	21.09	
-	-	-	-				-	
Boiler for: Facility Needs	3.841	1.28	5.121	3.85		1.28	5.13	
-	-	-	-				-	
Kitchen and Restrooms	1.399	-	1.399	1.4			1.4	
Landscaping and Irrigation	1.849	-	1.849		1.85		1.85	
-							-	
TOTAL	15.533	126.527	142.06	13.65	1.85	123.03	138.53	
Note: System-level TOTAL for Source Water should closely match with plant-level ANNUAL TOTAL calculated in								

stem-level TOTAL for Source Water should closely match with plant-level ANNUAL TOTAL calculated in Part 2.1, also shown here in the purple cell.

13.2

^{*} Use calculated Recirculated Water for user estimate for Recirculated Water.


^{*} Use calculated Gross Water Use to cross-check TOTAL of User Estimate of Water Use.

Part 4.2 - System Water Outflow

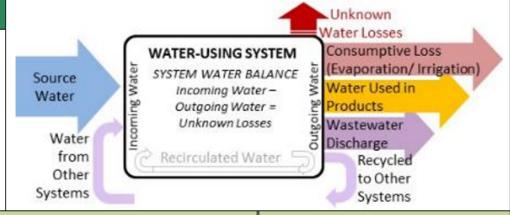
For EACH water-using system, please provide an estimate of water outflow to different paths.

Note: You may use values in the purple cells, which were calculated in previous tabs, as a guide for your estimates in yellow cells, as shown below:

- * Use calculated <u>Wastewater Discharge + Recycled To Other Systems</u> for Estimated <u>Wastewater Discharge</u> and <u>Recycled To Other Systems</u>.
- * Use calculated <u>Known Losses (Evaporation/Other)</u> for Estimated <u>Known Losses (Evaporation/Other)</u>.

	Water Flows Calculated on Tab 3			Outgoing Water (Measured or Estimated)				
	(Million Gallon per Year)			(Million Gallon per Year)				
Water-Using System	Wastewater Discharge + Recycled To Other Systems	Known Losses (Evaporation/ Other)	Water Consumed in Product	Wastewater Discharge	Recycled To Other System	Known Losses (Evaporation/ Other)	Water Consumed in Product	
Process: Process 1	6.09	-	0.75	4.7	1.33		0.375	
-	-	-	-					
-	-	-	-					
Cooling Tower for: Process 1	0.446	0.891			0.43	0.87		
Cooling Tower for: Air Conditioning	0.09	0.179			0.09	0.18		
-	-	-						
Boiler for: Facility Needs	0.419	3.422		0.4		3.422		
-	-	-						
Kitchen and Restrooms	1.399			1.4				
Landscaping and Irrigation		1.849				1.85		
-								
TOTAL	8.443	6.341	0.75	6.5	1.85	6.322	0.375	
Note : System-level TOTAL for Wastewater Discharge should closely match with plant-level ANNUAL TOTAL				6.36	1.85	•	I TOTAL for Recycled	

Disclaimer


calculated in Part 2.2, also shown here in the left purple cell.

Systems calculated in Part 4.1, also sho

Part 4 Results - System Water Balance

This table shows the water balance for each system in your plant. Based on the data you have provided, it compares total incoming water with total outgoing water to estimate unknown water losses for each system.

Note: A <u>positive water imbalance</u> may mean overestimated incoming water, underestimated outgoing water, and/or unknown water loss in the system. A negative water imbalance may mean underestimated incoming water, overestimated outgoing water, and/or unaccounted incoming water to the system. You may refine your estimates in Tab 3, Part 4.1 and Part 4.2 and revisit system water imbalance, especially, if the water flows are unmetered.

Motor Heing System	Total System	Water Imbalance (%)			
Water-Using System	Incoming Water Outgoing Water V		Water Imbalance	(% of Incoming Water)	(% of Total)
Process: Process 1	6.8	6.405	0.395	5.8%	87.2%
-	-	-	Plot Area	-	-
-	-	-	Tiotracu	-	-
Cooling Tower for: Process 1	1.3	1.3	-	-	-
Cooling Tower for: Air Conditioning	0.3	0.27	0.03	10.0%	6.6%
-	-	-	-	-	-
Boiler for: Facility Needs	3.85	3.822	0.028	0.7%	6.2%
-	-	-	-	-	-
Kitchen and Restrooms	1.4	1.4	-	-	-
Landscaping and Irrigation	1.85	1.85	-	-	-
-	-	-	-	-	-
ANNUAL TOTAL	15.5	15.047	0.453		100.0%

Part 8.1 - Heat Energy in Wastewater Leaving the Plant

This table calculates the heat energy in wastewater leaving the plant. For each water-using system, please provide the average temperature of incoming source water and outgoing wastewater.

Heating Efficiency:

0.78

	Water Temperature (°F)		Temperature Rise	Quantity of Wastewater Discharge		
Water-Using System	Incoming Source	Outgoing	(°F)	(Million Gallon)	Heat Energy in Wastewater (MMBtu)	
	Water Wastewater (1) (Willion Gallon)					
Process: Process 1	75.0	95.0	20.0	4.7	1,006	
			-	-	-	
			-	-	-	
Cooling Tower for: Process 1			-	-	-	
Cooling Tower for: Air Conditioning		-		-	-	
			-	-	-	
Boiler for: Facility Needs	75.0	110.0	35.0	0.4	150	
-			-	-	-	
Kitchen and Restrooms			-	1.4	-	
Landscaping and Irrigation			-	-	-	
-			-	-	-	
TOTAL	1,156					

Part 8.2 - Pump, Fan and Motor Energy

This table calculates the electricity use associated with pump, fan and other motor-driven equipment to use water in your plant. Please select the water-using system from the drop-down lists and enter data in the highlighted cells.

Water-Using System	Description	Number	Hours of Operation per Year	Load Factor	Horsepow	er Efficiency (%)	Energy Use (kWh)
Process: Process 1	Service Water Pum	1	8,760	0.7	25.0	91.0%	125,672
Cooling Tower for: Process 1	Hot Well Pumps	2	8,760	0.7	100.0	91.0%	1,005,378
Cooling Tower for: Process 1	Cold Well Pumps	2	8,760	0.7	50.0	91.0%	502,689
Cooling Tower for Drosess 1	Гара	2	4 000	0.7	25.0	01.00/	127 722
4.System Water Balance 5.Unit Costs	6.System Water	Intake&Dischard	ge 7.Water	&Wastewater Tre	eatment	8.Embodied Energy	9.Plant Wate

Part 10.2 - System-Specific Water Efficiency Measures Implemented in Your Plant

Please indicate if the following system-specific water efficiency measures are implemented in your plant. Select NA if a measure is not applicable to your plant or its water-

using systems.	
Process: Process 1	
Have you installed equipment (e.g., timers, solenoids, level/pressure switches) to automatically shut off water flow when water is not required, such as	

at the end of a production cycle?

Are solenoids and automatic shutoff mechanisms checked regularly to ensure that they are working properly?

Is equipment set to the minimum flow rates recommended by the manufacturer?

Have pressure-reducing devices been installed on equipment that does not require high pressure?

Does process equipment reuse water (i.e., closed loop) or use reclaimed water from other parts of the facility?

Have you replaced water-based transportation with either waterless techniques or recycled water?

Are all hoses equipped with an automatic shutoff nozzle?

Are improved rinsing techniques used and optimized: counter-current systems? Are improved rinsing techniques used and optimized: sequential use from high to lower quality needs?

Are improved rinsing techniques used and optimized: conductivity flow controls? Are improved rinsing techniques used and optimized: improved spray nozzles/pressure rinsing?

Are improved rinsing techniques used and optimized: fog rinsing? Is spent rinse water reclaimed and reused for lower grade processes or for other facility applications?

Have steps been taken to reduce the water used by open steam sterilizers (e.g., utilizing jacket and chamber)? Are you using detergents that can easily be removed with little water?

Is water used for cleaning submetered?

Are employees aware of deionized/reverse osmosis (or other specially treated) water use?

Are the flow parameters for cleaning systems monitored periodically? Are conductivity controllers used in rinses?

At wash station, are booster pumps used with low-pressure water instead of high-pressure water?

Are signs posted near equipment encouraging employee awareness of water use and discouraging tampering with equipment flow rate?

Has process cleaning or facility cleaning been replaced with or supplemented by waterless techniques (e.g., burnout ovens, ultrasonic cleaning) where

No No

No No

No

No

No

No

No

No

No

No

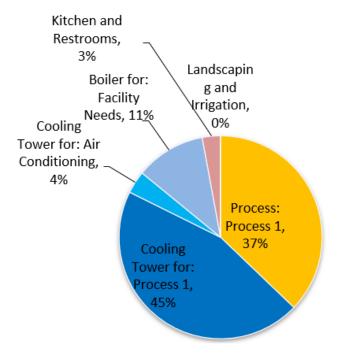
No

No

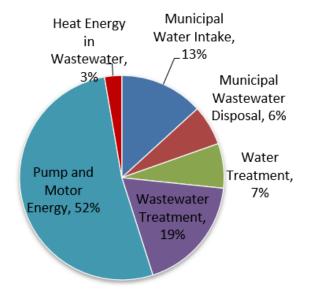
No

No

No


No

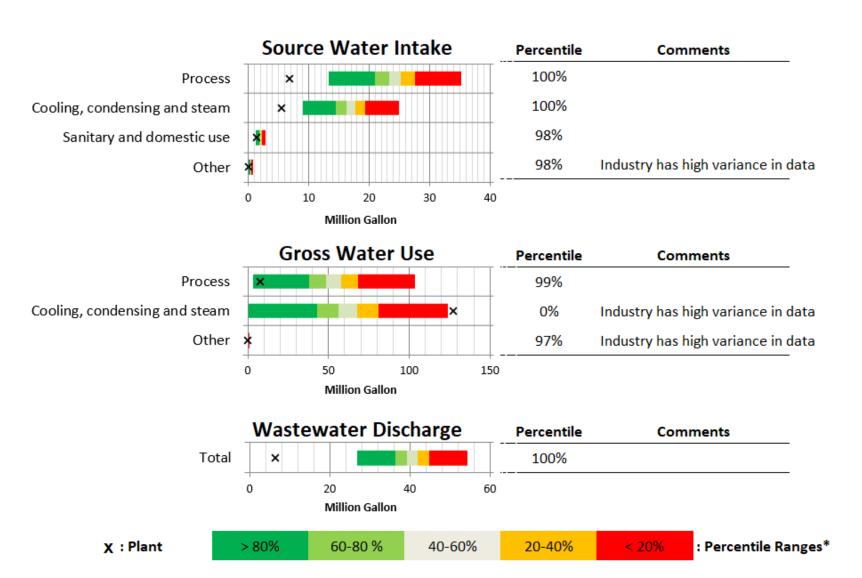
No No


No

No

True Cost of Water by System

True Cost of Water by Cost Component

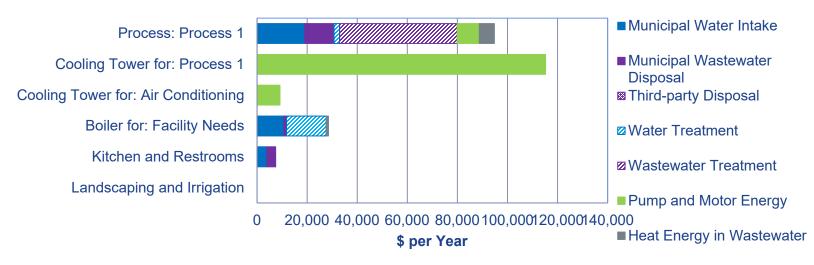


These charts present the percent distribution of **true cost of water** by different water-using systems in your plant (left) and by cost components (right).

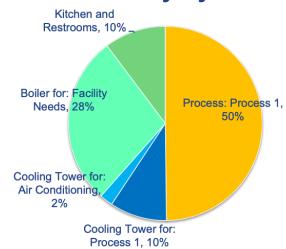
By identifying systems and cost components that are contributing the most towards true cost of water, you may prioritize measures to focus on them.

Part 5: Water Savings Opportunity

5.1 Comparison with Industry Average

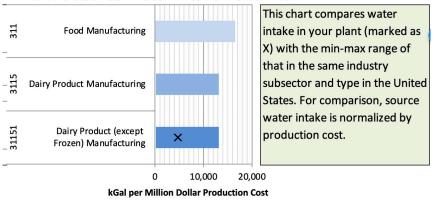

These charts compare water flows in your plant (marked as X) with those in the same industry subsector.

* Percentile represents the percentage of similar facilities with a higher water usage.


The percentiles are determined using data from STATCAN, Canada's statistics agency. Average water use for each industry was determined using total water use data and number of facilities for each 3-digit NAICS code. The standard deviation was derived using the reported coefficient of variance "grade" for each reported value.

PWP provides comprehensive results

True Cost of Water



Water Intake by System

Comparison with Industry Average

Plant's Source Water Intake Benchmark

Water Imbalance by System

	Incoming Outgoing Water Water		Water Imbalance		
Water-Using System	Million Ga	allon per Year	Million Gallon Per Year	% of Incoming Water	% of Total Loss
Process: Process 1	6.8	6.405	0.395	5.8%	87.2%
Cooling Tower for: Process 1	1.3	1.3	-	-	-
Cooling Tower for: Air Conditioning	0.3	0.27	0.03	10.0%	6.6%
PLANT TOTAL	15.5	15.047	0.453	16.5%	100.0%

ENERGY STAR

Other Resources

South Florida Water Management District Water Efficiency and Self-Conducted Water Audits at Commercial and Institutional Facilities Guide

https://www.sfwmd.gov/documents-by-tag/waterefficiency

Environmental Defense Fund, AT&T, & GEMI – Cooling Tower Trainings
Water Efficiency Toolkit with Scorecard and WaterMAPP Tool
http://gemi.org/EDFGEMIwaterMAPP/

City of Boulder Commercial, Industrial, and Institutional (CII) Water Assessment Tool and User's Guide – based on WaterSense at Work

https://www.brendlegroup.com/actions-insights/resources/

Conclusion

Email: watersense@epa.gov

Helpline: (866) WTR-SENS (987-7367)

www.epa.gov/watersense

www.facebook.com/epawatersense

www.twitter.com/epawatersense

