Water: Industrial Use, Technologies & Practices

James Cain

Sr. Environmental Engineer

Massachusetts Office of Technical Assistance

November 8, 2021

Today's Presentation

- Why/why not conserve?
- Trends in recent years
- Industrial uses of water
- Conservation practices and technologies
- Exercise: Identifying water conservation opportunities

TURA Program Implementation

The TURA Program is co-implemented by:

- The Massachusetts Department of Environmental Protection
- The Massachusetts Office of Technical Assistance
- The Toxics Use Reduction Institute at UMass Lowell

TURA is a state law, not a federal law. OTA, DEP, and TURI are not part of EPA.

MassDEP

Regulatory

OTA

Confidential Technical Assistance

TURI

Research & Grants

OTA Technical Assistance

- OTA can assist facilities with:
 - Toxics use reduction
 - Environmental compliance
 - Energy efficiency
 - Resource conservation
- Both onsite and remote assistance are available
- After a site visit, OTA delivers

 a report with tailored recommendations

Trends in Massachusetts

Regulatory context

Stricter standards for wastewaters discharged directly into the environment & for industries discharging to sewers/POTWs

Groundwater sampling and remediation efforts

Upgrades to publicly owned treatment works and company pre-treatment plants

Sectoral trends

Loss of many facilities in water intensive industries (to Mexico; SE Asia)

Investment in Massachusetts by Europe (to a lesser extent)

Growth of biotech & other high-tech industries

Smaller facilities held to the more stringent standards of larger facilities

Technological advancement

Improvements in instrumentation and controls

More reliable and sensitive testing methods

Polling Question

What is the most likely reason companies **don't** conserve water?

- A. Billed to another department or location (corporate)
- B. Not aware of other associated costs (beyond water & sewer charges)
- C. No sub-metering and poor monitoring
- D. Included in overhead Not a significant cost
- E. Greatly delayed or no feedback when excessive use occurs
- F. Other

Polling Question

What is the most likely reason companies **do** conserve water?

- A. Seasonal restrictions on supply or quality
- B. Water rates or sewer rates suddenly increase (municipal upgrades)
- C. Company closely manages all operating costs
- D. To minimize size (costs) of new or replacement water processing equipment
- E. Corporate goals
- F. Other

Industrial Uses of Water

Water power and kinetic energy

Direct mechanical (1800s),

Turbines & microturbines for electrical;

Water jet cutting, power washing

Cooling and heating

Fluids and solids; Contact (direct) or non-contact (indirect)

Washing

Laundries, extraction, degreasing, separation/classification, electroplating...)

Cleaning of containers, vessels, work areas, process equipment

Transporting solids and ions

Pulp & paper, food, dyeing, electroplating, water treatment, microelectronics and semiconductors

Industrial Uses of Water

Gas and aerosol scrubbing

Products of combustion and other reactions; Water curtain for paint overspray

Vaporization

Boilers, cooling towers, air humidification

Lubrication and seals

Machining, conveyors, liquid ring vacuum pumps and other pump seals

Uses in the product

Beverages, soups, cosmetics, cleaners, coolants, paints Chemicals in diluted, solubilized, or dispersed forms

Practices and Technologies

Reuse or recycling

- Return condensate to boilers
- Recirculate water for cooling or heating
- Eliminate uses of city water for once-through cooling (wasteful and can violate plumbing codes)

- Increasing cycles of concentration of cooling towers
- Closed thermal loop indirectly heated or chilled
- Find additional uses for reverse osmosis reject water (20-40% of feedwater)

Production unit redesign Production unit modernization

- Extending use with filtration, coalescing, deionization, condensers, pumps
- Re-evaluate if process water quality standards can be relaxed in some areas
- Regulate pressures and line sizes for balanced distribution to facility loads – avoid oversupply/undersupply
- Cascading or countercurrent rinsing/washing
- Evaluate potential for dry processing

Practices and Technologies

Improved operations and maintenance

- Use sub-meters and flow meters
- Good monitoring & maintenance prevents declines in efficiency and overuse of water
- Implement spray regulation
- Add sensors and timers on valves to shut off when nothing being processed
- Zero Discharge considerations and precautions

- Check if water meters running when should be no use
- If regenerating ion exchange columns, make sure resins are not getting old and worn out
- Ensure sand or multimedia filters not lumping/channeling
- Minimize evaporation from scrubbers by not diluting process exhaust with uncontaminated air from general ventilation

Product reformulation

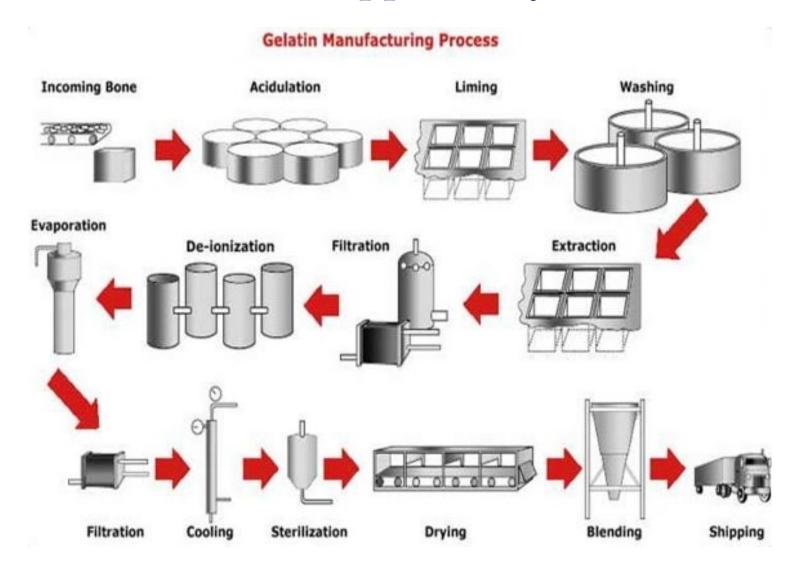
If water is a major constituent of the product, see if producing a more concentrated formulation is feasible

Contact Us

James Cain

Tech. Staff Supervisor

James.Cain@mass.gov


Website: mass.gov/ota

Exercise: Identify a Water Conservation Opportunity

- 1. Target a process step to evaluate for water conservation.
- Suggest a practice or technology for water use reduction here.
- 3. What steps could you take to encourage this business to adopt your suggestion?

