

Energy Conservation DOE Best Practices Tools

Beka Kosanovic, PhD.

Director, Industrial Assessment Center

Mechanical & Industrial Engineering Department University of Massachusetts - Amherst

TUR Planner Continuing Education Conference

April 12, 2012

Newton, MA

Outline

- Advanced Manufacturing Office Programs
 Technology Deployment Activities
 - Industrial Assessment Centers
 - Better Plants Program (ISO 50001) Superior Energy Performance Program
 - Clean Energy Application Centers
- Overview of BestPractices Tools

Beginning in 1984 with four Schools

For more information on IAC program and participating schools visit: http://iac.rutgers.edu/database/centers/

Industrial Assessment Center at the University of Massachusetts

- Provides assistance to New England Industry since 1984
- US DOE Funding allows the IAC Program to provide no cost energy conservation, waste prevention and productivity assistance to small and medium sized industrial firms within S.I.C. 20 through 39

IAC Program Goals

- Reduce Industrial Energy Use
- Reduce waste and prevent pollution in manufacturing operations
- Raise productivity
- Lower Operating Costs
- Increase Profitability
- Provide Professional Training for Students

Client Criteria

- Have Annual Energy Costs Less Than \$ 2.5
 Million
- Have Gross Sales Less Than \$100 Million
- Have Less Than 500 Employees
- Have No In-house Energy Staff
- Be Within 150 Miles of Amherst, MA

UMASS Clients 1984-2012

- Over 700 plants visited since 1984
- Over \$12 billion in gross annual sales
- \$310 million in annual energy costs
- Over 82,000 employees
- Over 4,300 recommendations with \$62,000 average annual cost savings per assessment
- 51% Implementation Rate; 1.04 years payback period
- \$125,000 average savings per assessment in 2010-2011

IDENTIFYING EFFECTIVE ENERGY SAVING OPTIONS

- Major energy users
- Major pieces of equipment
- Motors
- Boilers and Furnaces
- Compressors/Chillers
- Hot exhausts
- Compressed air leaks
- Cooling Towers

- Variable Frequency Drives
- Energy-efficient Motors
 Consider CHP
- Energy Management Systems
- Steam Trap Replacement High-efficiency Boiler
- Chiller Water Plant Operation
- Process Heat Recovery

TOP \$\$ SAVERS

- Convert To VSD For Pumps & Blowers
- Process Heat Recovery
- Use High Efficiency Lamps & Ballasts
- Reduce Fluid Flows
- Change Electrical Rates
- Use Energy Efficient Equipment
- Consider Cogeneration
- Preheat Fluids With Waste Heat
- Insulate Equipment
- Switch From Electrical To Fossil Fuels

Superior Energy Performance

- The SEP certification program provides facilities with a pathway for continual energy efficiency improvements
- To earn SEP Certification facilities must:
 - Conform to the ISO 50001 energy management system standard
 - Verify an improvement in energy performance using the SEP Measurement and Verification Protocol for Industry.

Clean Energy Application Centers

DOE Clean Energy Application Centers: Locations, Contacts, and Web Sites

National Energy Technology

U.S. Department of Energy

Laboratory (NETL)

Phone: 412-386-6406

www.ceere.org

DOE Clean Energy

Program Contacts

Application Centers:

Office of Energy Efficiency and

E-mail: katrina.pielli@ee.doe.gov

U.S. Department of Energy

Renewable Energy

Phone: 202-287-5850

DOE Clean Energy RAC Coordinator

Power Equipment Associates

E-mail: tlbronsonpea@aol.com

Phone: 630-248-8778

Oak Ridge National Laboratory

U.S. Department of Energy

Phone: 202-586-3753

(ORNL)

AMO BestPractices Tools

- Motor Driven Systems
 - CWSAT (Chilled Water System Assessment Tool)
 - AirMaster + (Compressed air system assessment tool)
 - FSAT (Fan System Assessment Tool)
 - MotorMaster + (Motor management tool)
 - PSAT (Pumping System Assessment Tool)
 - ChemPEP (Plant Energy Profiler for the Chemical Industry)

AMO BestPractices Tools (Continued)

- Process Heating
 - PHAST (Process Heating Assessment and Survey Tool)
 - NxEAT (NOx and Energy Assessment Tool)
 - Combined Heat and Power Application Tool
- Steam Systems
 - SSST (Steam System Scoping Tool)
 - SSAT (Steam System Assessment Tool)
 - 3E Plus Insulation Assessment Tool

CWSAT Program

Purpose: Reduce the energy consumption of installed chilled water systems

Goal: Create a simple but useful software tool for analyzing potential energy savings in chilled water systems

CWSAT INTRODUCTION

• A central chilled water system may account for a quarter to a third of facility energy consumption.

ULTIMATE GOAL

- Provide adequate cooling to process or comfort load.
- Reduce energy consumption of chilled water SYSTEMS (important to look at it as a SYSTEM and not as a collection of components).
- The Program <u>IS NOT</u> intended to determine system energy use down to the kWh or MMBtu
- Program <u>IS</u> intended to direct analysis effort toward the most promising cost reduction opportunities

CWSAT ECM Capabilities

- New Equipment Specification
 - Chillers, Towers, Pumps
- Variable Speed Drive Installation
 - Centrifugal Chillers, Tower Fans, & Pumps
- Various Chilled and Condenser Water Strategies
- Air-Cooled to Water-Cooled System Conversion
- Use Free Cooling When Possible
- Sequence Chillers

ANN THE PARTY OF MARCH 1997

Annual Cooling System Operations

New Output Screen		×
Proposed Chiller System Basic System Summary Number of Chillers: CHWT Setpoint: Geographic Location: Condenser Cooling Method: Water-Cooled	Constant CWT?: Constant CWT Setpoint: Yes 82	Return to New Input Screen Go To Proposed Chiller Details Screen
Tower Summary Type: Tower With Variable Speed Motor(s) #Towers: 1 Sizing: hp Fan Motor hp: 40 Tons: 400 Number of Cells per Tower: 1 Proposed Chiller Summary Compressor Capacity Age FLE [tons] [years] [kW/ton] Chiller 1 Helical Rotary 400 1 [0.500]	Pump Summary CHW CW Variable Flow?: No No Flow Rate [gpm/ton]: 2.4 3 Motor size (hp): 40 50 Pump Efficiency [%]: 80 80 Motor Efficiency [%]: 90 90 Energy Summary Chiller Energy: 375,129 kWh \$22,977	Go To Proposed Tower Details Screen Go To Proposed Pump Details Screen Show Savings Summary Screen Help
r Energy Efficiency	Tower Energy: 105,701 kWh \$6,474 Pump Energy: 653,496 kWh \$40,027 Total Energy: 1,134,326 kWh \$69,477	

- Chiller
 - 375,100 kWh
 - \$23,000
- Tower
 - 105,700 kWh
 - \$6,500
- Pumps
 - 653,500 kWh
 - \$40,000
- ~1,134,300 kWh
- \$69,500

Install VFD on Tower Pumps

New Output Screen		X
Proposed Chiller System Basic System Summary Number of Chillers: CHWT Setpoint: Geographic Location: WI Madison Condenser Cooling Method: Water-Cooled	Constant CWT Setpoint: Water-Cooled Summary Yes 82	Return to New Input Screen Go To Proposed Chiller Details Screen Go To
Tower Summary Type: Tower With Variable Speed Motor(s) #Towers: 1 Sizing: hp	Pump Summary CHW CW Variable Flow?: No Yes Flow Rate [gpm/ton]: 2.4 3	Proposed Tower Details Screen Go To
Fan Motor hp: 40 Tons: 400 Number of Cells per Tower: 1	Motor size (hp): 40 50 Pump Efficiency [%]: 80 80 Motor Efficiency [%]: 90 90	Proposed Pump Details Screen Show Savings
Proposed Chiller Summary Capacity Age FLE Compressor [tons] [years] [kW/ton] Chiller 1 Helical Rotary 400 1 [0.500]	Energy Summary Chiller Energy: 375,116 kWh \$22,976	Summary Screen Help
	Tower Energy: 98,036 kWh \$6,005 Pump Energy: 529,958 kWh \$32,460	
	Total Energy: 1,003,110 kWh \$61,441	
4		

- Potential Annual Savings:
 - 131,216 kWh
 - \$8,036

Center for Energy Efficiency and Renewable Energy

Install VFD on Tower Fan

New Output Screen		X
Proposed Chiller System Basic System Summary Number of Chillers: CHWT Setpoint: Geographic Location: Condenser Cooling Method: Water-Cooled Tower Summary	Constant CWT ?: Yes Constant CWT Setpoint: 82	Go To Proposed Chiller Details Screen Go To Proposed
Type: 1-Cell With 1-Speed Motor #Towers: 1 Sizing: hp Fan Motor hp: 40 Tons: 400 Number of Cells per Tower: 1	Pump Summary CHW CW Variable Flow?: No No Flow Rate [gpm/ton]: 2.4 3 Motor size (hp): 40 50 Pump Efficiency [%]: 80 80 Motor Efficiency [%]: 90 90	Tower Details Screen Go To Proposed Pump Details Screen
Proposed Chiller Summary Compressor Capacity Age FLE [tons] [years] [kW/ton] Chiller 1 Helical Rotary 400 1 0.500	Energy Summary Chiller Energy: 375,129 kWh \$22,977	Show Savings Summary Screen Help
	Tower Energy: 134,984 kWh \$8,268 Pump Energy: 653,496 kWh \$40,027 Total Energy: 1,163,609 kWh \$71,271	

- Potential Annual Savings:
 - 29,283 kWh
 - \$1,794

Vary Tower Water Temperature with Outside Temperature

New Output Screen		×
Proposed Chiller System Basic System Summary Number of Chillers: CHWT Setpoint: 60	-Water-Cooled Summary Constant CWT?:	Return to New Input Screen
Geographic Location: WI Madison Condenser Cooling Method: Water-Cooled	Following Difference:	Proposed Chiller Details Screen Go To
Tower Summary Type: Tower With Variable Speed Motor(s) #Towers: 1 Sizing: hp Fan Motor hp: 40 Tons: 400	Pump Summary CHW CW Variable Flow?: No No Flow Rate [gpm/ton]: 2.4 3 Motor size (hp): 40 50 Pump Efficiency [%]: 80 80	Proposed Tower Details Screen Go To Proposed Pump Details Screen
Number of Cells per Tower: Proposed Chiller Summary Compressor Capacity Age FLE [tons] [years] [kW/ton] Chiller 1 Helical Rotary 400 1 0.500	Motor Efficiency [%]: 90 90 Energy Summary Chiller Energy: kWh \$20,772	Show Savings Summary Screen Help
	Tower Energy: 129,599	
	Total Energy: 1,122,227 kWh \$68,736	

- Potential Annual Savings:
 - 12,100 kWh
 - \$740

Implementation of All Cooling System Improvements

New Output Screen		×
Proposed Chiller System Basic System Summary Number of Chillers: 1 CHWT Setpoint: 60	-Water-Cooled Summary Constant CWT?:	Return to New Input Screen
Geographic Location: WI Madison Condenser Cooling Method: Water-Cooled	Following Difference:	Proposed Chiller Details Screen
Tower Summary Type: Tower With Variable Speed Motor(s) #Towers: 1 Sizing: hp Fan Motor hp: 40 Tons: 400 Number of Cells per Tower: 1	Pump Summary CHW CW Variable Flow?: No Yes Flow Rate [gpm/ton]: 2.4 3 Motor size (hp): 40 50 Pump Efficiency [%]: 80 80 Motor Efficiency [%]: 90 90	Proposed Tower Details Screen Go To Proposed Pump Details Screen Show Savings
Proposed Chiller Summary Compressor Capacity Age FLE (tons) [years] [kW/ton] Chiller 1 Helical Rotary 400 1 0.500	339,132 KWII \$20,772	Summary Screen
	Tower Energy: 117,310 kWh \$7,185 Pump Energy: 529,958 kWh \$32,460 Total Energy: 986,399 kWh \$60,417	

Potential Annual Savings:

- 147,927 kWh
- \$9,060

CEERE Center for Energy Efficiency and Renewable Energy WWW.Ceere.org

"Free Cooling"

Free Cooling: Case Study

Without Using Free Cooling

- 3,478,900 kWh actual (\$296,000 annually)
- 3,436,900 kWh predicted
- Difference: 41,974 kWh (-1.2%)

With Free Cooling

- 489,100 kWh and \$41,570 actual savings
- 513,500 kWh and \$43,644 predicted savings (+4.9%)

Process Heating Assessment and Survey Tool (PHAST) What is PHAST?

A tool that can be used to:

- Estimate annual energy use and energy cost for furnaces and boilers in a plant
- Perform detail heat balance and energy use analysis that identifies areas of energy use and energy losses for a furnace or a boiler
- Perform "what-if" analysis for possible energy reduction and efficiency improvements through changes in operation, maintenance and retrofits of components/systems
- Obtain information on energy saving methods and identify additional resources

Areas of Energy Saving Opportunities

Heating Systems - Heat Generation Energy Saving Opportunities

	Energy Saving Techniques	Energy Savings (% Range)
1	Air-fuel ratio control	5 to 25
2	High turndown combustion system	5 to 10
3	Air Infiltration (Furnace sealing)	5 to 10
4	Use of Preheated Air	15 to 30
5	Use of oxygen enrichment or oxy fuel burners	5 to 25

Preheat Furnaces #1 Combustion Air

ERST		
□ Furnace Data		×
File Help		
U.S. Department of Ener		
Energy Efficiency ar	nd Renewable Energy Bringing yo	u a prosperous future where energy is dant reliable and affordable
GEO.		
Plant Name	Furnace Name	3002
Water - Cooling Losses	<u>W</u> all Losses	Opening Losses
<u>L</u> oad/Charge Material	Fixtures, <u>I</u> rays, Baskets etc. Losses	Atmosphere Losses
Other Losses	Flue Gas Losses/Heating System <u>E</u> fficiency	<u>H</u> eat Storage
Select Heat Source	Fuel-Air (02) Fired	: C Steam
	Current	Modified
Furnace Flue Gas Temp. (Degree	eF) 1400 Q Look Up	1400
Oxygen in Flue Gases (%)	12 Q Look Up	12
Excess Air (%)	119.33	119.33
Combustion Air Temp. (Degree F)	80 Q Look Up	700
Available Heat (%)	31.96	56.27
Available Heat User Defined (%)	31.96 Q Look Up	56.27
Gross Heat (Btu/hr)	1,325,885	753,071
Flue Gas Losses (Btu/hr)	902,132	329,318
Comment	s	⟨⇒ Previous Next <⇒
Current Net Heat Required (Btu/hr)	423,753 Furnace Sum	nmary P Enter/Edit Current Data
Modified Net Heat Required (Btu/hr)	423,753	Report Close

- Currently Using Room Air for Combustion @ 80-100
 F
- Furnace Exhaust Gas @ 1400 °F
- Preheat air to ~700 °F
- Annual Energy Savings:
 4,812 MMBtu/yr
- Potential Cost Savings: \$48,120
- Potential Savings for Three Furnaces: ~\$145,000

Improve Furnace #2 Combustion Efficiency

Furnace Data				X
File Help				
U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable and affordable				
Plant Name		Furnace Name	3002	
Water - Cooling Losses	<u>W</u> all l	osses	Opening Losses	
Load/Charge Material	Fixtures, <u>I</u> rays, Basi	kets etc. Losses	Atmosphere Losses	
Other Losses	Flue Gas Losses System <u>E</u> ffic		<u>H</u> eat Storage	
Select Heat Source	Fuel-Air (02) Fired	C Electric	C Steam	
Furnace Flue Gas Temp. (Degree F	Current 1400	Q Look Up	Modified 1400	
Oxygen in Flue Gases (%)	12	Q Look Up	7	
Excess Air (%)	119.33		44.75	
Combustion Air Temp. (Degree F)	80	Q Look Up	85	
Available Heat (%)	31.96		49.84	
Available Heat User Defined (%)	31.96	Q Look Up	49.84	
Gross Heat (Btu/hr)	1,325,885		850,227	
Flue Gas Losses (Btu/hr)	902,132		426,474	
Comments			♦ Previous Next ♦	1
Current Net Heat Required (Btu/hr) Modified Net Heat Required (Btu/hr)	423,753 E	Furnace Sum	mary Propert Report Current Date	

- O₂ measured @ 12%
- Should be reduced to 7%
- Annual Energy Savings: 3,996 MMBtu/yr per furnace
- Potential Cost Savings: \$39,960
- Potential Savings for Three Furnaces: ~\$119,900

Improve Furnace Insulation

Furnace Data		×
File Help		_ ~ ~
U.S. Department of Energ	у	AT MAKE WEEK
Energy Efficiency and	d Renewable Energy Bringing y	ou a prosperous future where energy is
	clean,abu	ndant,reliable and affordable
Plant Name	Furnace Name	3002
<u>L</u> oad/Charge Material	Fixtures, <u>I</u> rays, Baskets etc. Losse	<u>A</u> tmosphere Losses
Other Losses	Flue Gas Losses/Heating System Efficiency	<u>H</u> eat Storage
Water - Cooling Losses	<u>W</u> all Losses	Opening Losses
	Current	Modified
Surface Area (ft^2)	620	620
Average Surface Temp. (De	egree F) 250	130
Ambient Temp. (Degree F)	85	85
Correction Factor	1	1
Heat Required (Btu/hr)	246,063	66.402
Treat required (Blazzin)	240,003	00,402
		⟨⇒ Previous Next <> □
Comments		T. T. CYTOGO TACKE T
Current Net Heat Required (Btu/hr) 423,753 Furnace Summary Denter/Edit Current Data		
Modified Net Heat Required (Btu/hr)	244,092	
modified Net Fredt Freddilled (bita/fil)	211,002	Report Close

Annual Energy Savings:

> 1,510 MMBtu/yr Potential Cost Savings: \$15,100

• Potential Savings for Three Furnaces:

~\$45,300

Pumping System Assessment Tool (PSAT)

- An <u>opportunity</u> quantification tool
- Relies on field measured (or estimated) fluid and electrical performance data
- Uses achievable pump efficiency algorithms from the Hydraulic Institute
- Motor performance (efficiency, current, power factor) curves developed from average motor data available in MotorMaster+ (supplemented by manufacturer data for larger size, slower speed motors)

Some symptoms of interest

- Throttle valve-controlled systems
- Bypass (recirculation) line normally open
- Multiple parallel pump system with same number of pumps always operating
- Constant pump operation in a batch environment or frequent cycle batch operation in a continuous process
- Cavitation noise (at pump or elsewhere in the system)
- High system maintenance
- Systems that have undergone change in function

www.ceere.org

Head calculation

PSAT includes a pump head calculator to support user-measured pressure, flow data

Pumping System Assessment

Raw Crude

- Head loss: 358 ft
- Friction loss:

78.7 hp

83.2 kW

Annual Cost:

\$28,000

Optimization Rating:

 $\frac{197.6}{242.0} = 0.816 (81.65\%)$

Raw Crude

Raw Crude

Hood and Saturation Spray Pumps

 Use VSD to control the flow – reduce flow 50% during off periods

Potential Savings:321,000 kWh\$19,000

Compressed Air - Air Master

AC – Reduce Air Leaks

Annual Energy Savings: 77,632 kWh

Potential Cost Savings: \$3,551

Measure Cost: \$1,000

AC – Add Receiver Tank

Annual Energy Savings: 18,709 kWh

Potential Cost Savings: \$711

Measure Cost: \$3,500

Information, Tools and Training

- Tip sheets, case studies, brochures, technical briefs etc.
- Energy Matters newsletter
- Industrial Technologies Monthly e-bulletin
- Software tools
- Training workshops and webcasts
- Web sites
- New:
 - Packets of Information for Plants

Center for Energy Efficiency

Questions?

Contact Information:

Beka Kosanovic

kosanovic@ecs.umass.edu

Ph.: 413-545-0684

Fax: 413-545-1027

