Resource Conservation Planning

By: Sandra J. Wyman, P.E.
Pollution Prevention (P2) Consulting
sandra@p2star.com
P2

Everything is a resource

- Energy
- Water
- Raw Materials
- Waste
- Money
- Time

How to mine the highest return

- Mass balance
- Energy balance
- Benchmark
- Regulatory screen
- Economic evaluation
- Efficiency

Does this sound like TUR to you?

Case 1: Energy/Raw Materials/Money

- Raw materials (organic solvents) have energy value; regulated to be burned via air permit
- Energy is captured during this process and recycled back to process coaters as heat
- Coater natural gas consumption is reduced (energy saved)
- Carbon footprint drops 6,000 TPY (carbon footprint reduced)
- This was presented at a TURI conference and can be found here:
https://www.turi.org/Our Work/Training/Continuing Education/Recent Training Presentations/Continuing Education C onference Fall 2012/Energy Recovery MADICO

Option	Annual Energy Change (Kwhrs)	Annual Energy Change (Therms)	Annual Cost Savings	Reduction in CO2 Footprint (tons/year)
Old Oxidizer Retired Subtotal	$-28,970,076$	$-988,459$	$\$ 1,285,000$	5,931
2002-2009 Facility Consolidation Subtotal	$-2,201,995$	$-75,132$	$\$ 97,672$	451

Heat recovery oxidizer used to burn VOCs

Case 2: Food Waste/Energy/Manure

- Maine's largest dairy farm had an issue with manure disposal
- They now run three biodigesters in the state, producing electricity, converting the waste to fertilizer to be reused on land used to graze cows
- The digesters run 40% food waste/ 60% manure produce CH 4 that is burned to generate electricity (enough for 1600 homes)
- https://www.agricycleenergy.com/about-us/what-is-anaerobic-digestion/

Case 3: Water/Energy/Money

- Water turbines produce energy using pressure drop (DP) \& water flow (GPM)
- Water turbines have HIGH efficiency of energy transfer (99% for Pelton shown below)
- Finding the right fit depends of the two variables the turbine uses
- Three residential water turbines power profiles below; then two industry examples

Design Parameter	Joe	Dan	Andy
Head (ft) -same as DP	1.7	35	75
Flow (gpm)	75	35	6
Water Turbine Supply			
Watts	24	230	78
Watt-Hrs/day	576	5,520	1,872
Kwhrs/month	17	165	57
Home Kwhrs/month Demand	400	400	400
Water Turbine Percent	4\%	41\%	14\%
of Home Energy Demand			

Co-Gen Facility

- Calpine generates 552 MW electricity

- A co-generator has two turbines generating electricity, one uses steam, the other waste heat from the first pass turbine
- To generate steam for the first pass, water from Portland Water District (PWD) is the source. PWD gets the water from Sebago Lake.
- If a slipstream of incoming water could be run through water turbine, stepping down line pressure, energy could be extracted.
- You are tapping power from pressurized incoming city water from PWD pumping station.

Calpine Co-Gen (con't)

- Incoming water flow $=174,000$ GPM
- Water line pressure = 60 PSI
- Assume water turbine is 99% efficient
- Assume 10% slipstream run through turbine
- Power generated by water turbine: 300,000 watts $=300 \mathrm{KW}$
- $300 \mathrm{KW} \times 24 \mathrm{hr} /$ day $=7,200 \mathrm{KWhr} /$ day $\times 30$ day/month $=216,000 \mathrm{kwhr} / \mathrm{month}$
- Yes-- we are dealing with a power plant that doesn't need extra power
- Or maybe it does, during a brownout or other emergency
- Let's take a look at an electroplater using a water turbine

Electroplating

- Water use $=10$ million gallons annually ($\sim 275 \mathrm{lb}_{\mathrm{m}} / \mathrm{min}$)
- Since the water flows through various tanks before hitting waste treatment and being discharged, why not grab some of that energy?
- Incoming water line pressure 70 PSI x 2.31ft head/PSI= 162 ft head

- 220 watt sec/ $\mathrm{lb}_{\mathrm{m}} \times 275 \mathrm{lb} \mathrm{l}_{\mathrm{m}} / \mathrm{min} \times \mathrm{min} / 60 \mathrm{sec}=1,007$ watts
- 1,007 watts $\times 24 \mathrm{hr} /$ day $\times \mathrm{KW} / 1,000$ watts $\times 30$ day/month $=\mathbf{7 2 5} \mathrm{KWHR} /$ month
- This might help with the office lights, but for electroplating, this is a small contribution

Calpine Co-gen - Water Conservation

- During a field trip to the facility with SMCC students, one picked Calpine for his energy capstone project in the Intro to Engineering class
- Forrest noted the cooling towers were losing tremendous amounts of water vapor and wanted to capture the loss; Calpine spends $\$ 500,000 / y e a r ~ f o r ~ w a t e r ~$
- His solution was an adaptation of fog nets used to condense water in arid climates, saving 30% of water used (108,765,936 gallons of Sebago Lake)

Forrest on left; these are the two water intakes at Calpine

