Industrial Water Conservation

TURA Resource Conservation Training/Workshop

March 31, 2022

Laura M. Babcock, Ph.D.

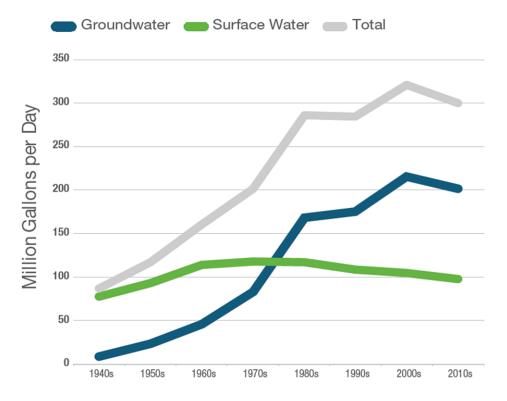
Overview

- Introduction MnTAP, Why water?
- Review strategies for water efficiency
 - Find water efficiency opportunities
 - Define water efficiency opportunities
 - Identify co-benefits
 - Develop the business case
 - Resources
- Conduct a water efficiency assessment
 - Practice, practice
 - Discuss opportunities and challenges

Minnesota Technical Assistance Program

Strengthening Minnesota businesses by improving efficiency while saving money through energy, water, and waste prevention.

MnTAP


- Established in 1984
- University of Minnesota, SPH
 - Outreach and assistance unit
 - Grant and partner funded
- Confidential, No Cost Engineering Assistance for Minnesota Businesses
- Site Assessments, Interns, Teams
- http://www.mntap.umn.edu

Why Water Efficiency in the Land of 10,000 Lakes

Metro Area Water Use

- Use increase with population
- Groundwater vs. Surface Water
- Unsustainable groundwater recharge
- Surface water impacts
- Contamination
- Hierarchy of use
- Cost avoidance
- Resource stewardship

Water: limited resource with real costs

- Water costs industry THREE times
- Incoming supply cost
- Processing cost
 - Purification
 - Heating/Cooling
 - Pumping
 - Treatment
- Discharge

Washing and rinsing

Product transport

Product processing

Product ingredient

Process sanitation

Evaporative cooling

Heating

Water treatment and purification

Domestic uses

Photo credit: Alliance for Water Efficiency www.allianceforwaterefficiency.org/

Strategies for Water Efficiency

Process for Technical Assistance

Map

- Measure
- Value
- Plan

Maintain

- Inspect
- Repair
- Prevent
- Repeat

Manage

- HP-LF
- High Eff.
- Automate

Modify

- Reduce
- Reuse
- Recycle

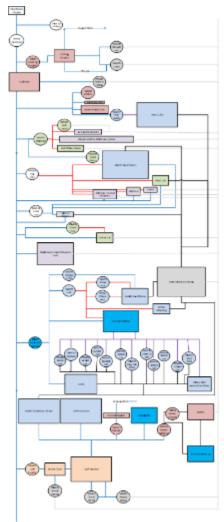
Strategies for Water Efficiency

Map – Get a picture of how water is actually used throughout the site

Map

- Measure
- Value
- Plan

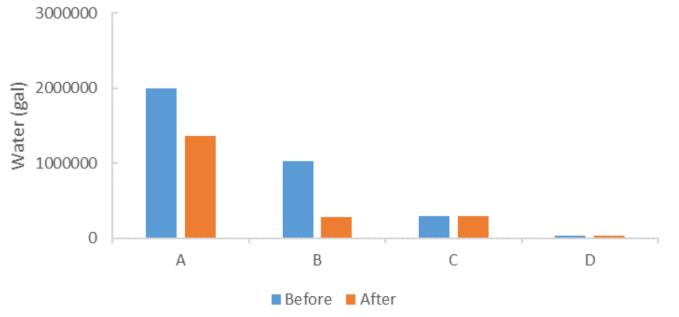
- First step in any water assessment
- Minimizes bias for/against operations
- May require multiple data sources, measurements and conversations
- Key to project selection
- Allows site to get best "return" on effort
- Facilitates site long term water efficiency strategy development - continuous improvement


Map Water Use – Aveda Blaine, MN

Motivation

- 22 million gpy water use
- 25% used in cleaning
- Reduce water use and costs

Approach


- Analyzing water meters
- Observe CIPs and manual sanitization
- Flow rate measurements
- Talking with workers
- SAP reports

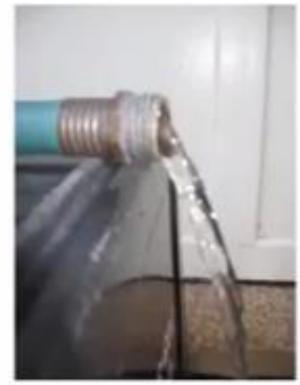
Water Efficiency Opportunity

Facility water mapping

- 15% Sanitation room
 - 4 operations
 - Manual and automated
- Changes in two operations
 - High efficiency spray nozzle
 - High efficiency spray ball
- Savings
 - 1.4 million gpy (40% of area use)
 - 7,300 therms
 - 56,000 kWh
 - \$20,000/yr (<1yr ROI)

Water Map Data – Meter, Measure, Estimate

Determine major components of the water balance-


measure what's happening

Visual impact clues

1 GPM 500,000 gal/year

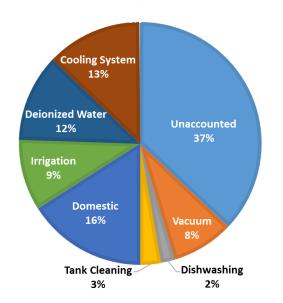
2 GPM 1,000,000 gal/year

6 GPM 3,000,000 gal/year

Strategies for Water Efficiency

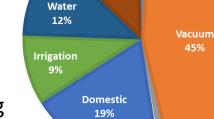
Maintain - repairing existing process to operate as designed

Maintain



- Inspect
- Repair
- Prevent
- Repeat

- Low hanging fruit, but can be significant
- Low cost within maintenance budget
- Requires staff time/attention
- Often postponed if not urgent
- Generally recurring
- Prevention is possible
 - Analyze leak incidents/recurrences
 - Add to PM schedule
 - Change materials or processes



Maintain Operations – Diasorin Inc., Stillwater, MN

Initial water map

Deionized

System

13%

Final water map Full water accounting

Motivation

- 8.5 million gpy water use
- 37% 3.1 million gpy unaccounted
- Avoid SAC increase
 - up to 74 units at \$2,500/unit
- Reduce costs and water use

Approach

- Create map of water use
- Close water balance
- Identify reduction strategies

http://www.mntap.umn.edu/download/200/2017/14153/yohanes-agustinus-diasorin-summary-2017.pdf

Water Efficiency Opportunity

- Facility water mapping
 - Detailed inspection no inconsistency
 - City meter identified leaks
- Vacuum system optimization
 - Liquid ring seal corroded
 - 3 gpm continuous leak
 - 1 million gpy direct to drain
 - Replace broken flow meter
 - 12.8 gpm actual flow vs 2.8 gpm target
 - 2.1 million gpy water savings
 - Implement maintenance check
- Results
 - 3.1 million gal water
 - \$23,000

Additional Efficiency Opportunities

- Domestic water use
- Hot water hardness
 - Hot water softened for quality
 - Unable to maintain low hardness
 - Required system purge, 15,600 gpy
 - Inspect water flow hot/cold mix
 - Isolate under sink mixing valves
 - Replace check valve in safety shower
 - Implement hardness monitoring and maintenance action plan
- Other (Manage)
 - WaterSense toilets, 750,000 gpy
 - Irrigation clock vs smart, 400,000 gpy

Easy conservation opportunities

Leak identification and repair

Strategies for Water Efficiency

Manage – optimizing existing process and equipment operation

Manage

- HP-LF
- High Eff.
- Automate

- Second level of complexity
- Can be achieved with low or modest cost
- Reset operation within current system limits
- Retraining operations staff
- Changing SOPs or practices
- Add operating controls/automation
- Replacing like for more efficient like
- Ideal for Plan, Do, Check, Act approach

Manage Process, Commercial Kitchen

North Memorial Hospital, Golden Valley, MN

Motivation

- Soup kettle used 1.5 million gal 127°F water per year
- Often left on when not needed

Approach

- Install solenoid and timer to replace hand valve - \$26
- Results
 - 1.3 million gal water/yr
 - 7000 therms/yr
 - \$13,000/yr

http://www.mntap.umn.edu/download/245/2018/15172/christopher-leppla-north-memorial-health-summary-2018.pdf

Manage Process, Federal Cartridge, Anoka, MN

Motivation

- Manage operating cost
- Use on-site wastewater treatment
- Avoid SAC increases

Approach

- Timed rinse cycle
- High pressure low flow nozzles
- Automatic shut off valves
- Use recycled water (Modify)

Results

- 5.5 million gal water
- \$83,000

http://www.mntap.umn.edu/intern/pdf/Federal%20Cartridge_Kaylea%20Brase.pdf

Easy conservation opportunities

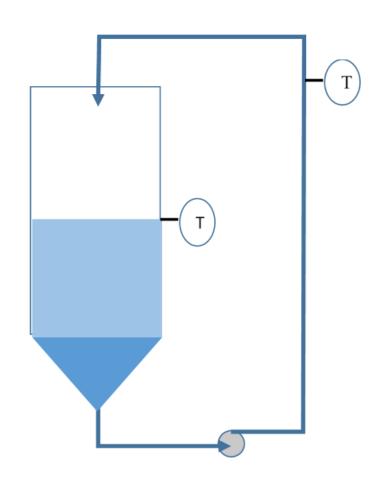
No water cleanup

Easy conservation opportunities

Pressure (heat), not volume

Conservation Opportunity - Hand Valves

Challenges


- Great for on/off
- Difficult to manage flow
- May be left on when not needed

Improvements

- Automatic shut off valves
- Timers
- Flow controllers
- Increase automation

Conservation Opportunity - Measurement

Challenges

- Hot water cleaning needed for sanitation
- Need to monitor T for compliance
- Need to fill tank to probe level

Improvements

- Additional temperature probe
- Recirculation loop to see temperature
- Minimize fill volume needed
- Automate process to not overfill

Strategies for Water Efficiency

Modification – significant change to process or equipment

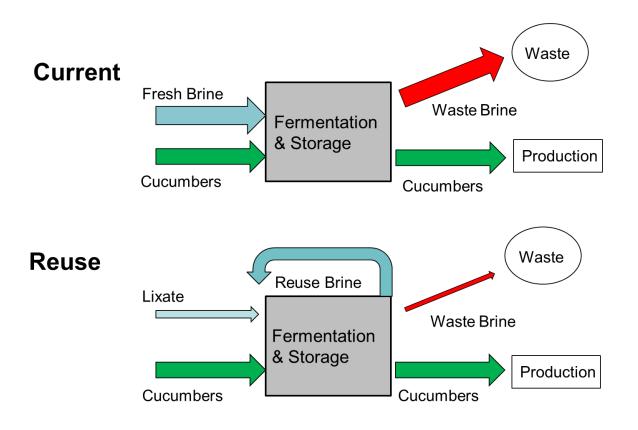
Modify

- Reduce
- Reuse
- Recycle

- High level of complexity
- Often presents some risk to the process
- Requires site champion to execute
- May require process redesign
- May require capital investment
- May require multiple levels of authorization
- Likely to require extended time to implement

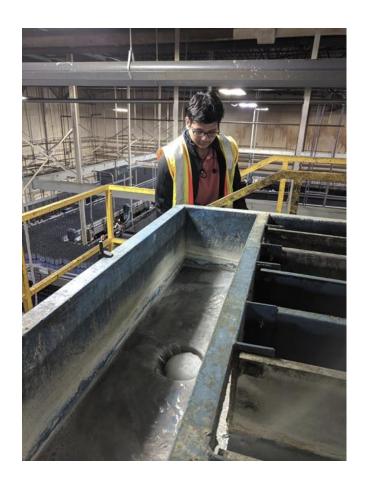
Modify Process Gedney Foods, Chaska, MN

Motivation


- Reduce demand on well supply
- Reduce wastewater discharge
- Water not a production bottleneck

Approach

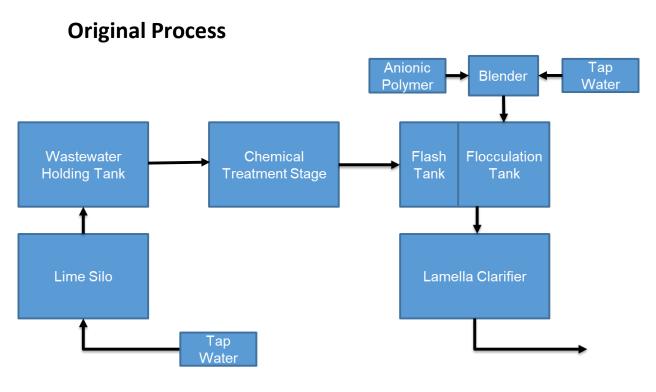
- Map water use
- Identify water savings options
- Reduce salt use


Water Efficiency Opportunity

- Steam Pasteurizer Overflow
 - 2 systems steam and hot water
 - Reuse steam overflow as makeup water for hot water feed
- Fermentation Brine
 - Current fresh brine for each tank
 - Proposed reuse brine solutions
- Results
 - 5 million gal water
 - •213,000 lb salt
 - •22,000 therms heat energy
 - •\$32,000

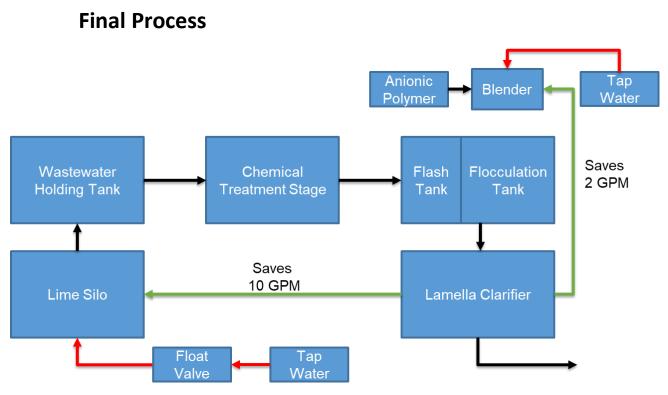
Modify Process Ball Corp., St. Paul, MN

Motivation


- 26 million gpy site water use
- Water critical to supply chain partners
- Water key corporate sustainability goal

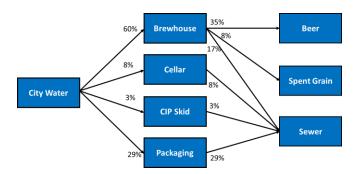
Approach

- Assess water use in operations
- Identify water reuse options


Water Efficiency Opportunity

- Reuse Purified Water in Lime Silo
 - Initial process City water
 - Reuse WW for lime feed slurry
- Reuse Water for Flocculant Delivery
 - Initial process City water
 - Reuse WW for polymer dispersion
- Approach
 - Recommission existing equipment
 - Modify process for reliability
 - Demonstrate impact on water

Water Efficiency Opportunity



- Reuse Purified Water in Lime Silo
 - Reuse WW for lime feed slurry
 - Reduced 10 gpm city water
- Reuse Water for Flocculent Delivery
 - Reuse WW for polymer dispersion
 - Reduced 2 gpm city water
- Results
 - •5.7 million gal water
 - •\$55,000
 - •<1 yr payback

Using All the Options at a Craft Brewery

Map

- Motivation
- Company commitment to minimize water use
- Prepare operations for growth

Maintain

- Repair broken valve
- 74,000 gpy water reduction
- 540 therm water heating
- \$1,100

Manage and Modify

- Install high efficiency rinse nozzle
- Reuse inside can rinse for outside rinse
- 150,000 gpy water reduction
- \$1,500

http://www.mntap.umn.edu/download/200/2017/14163/karl-wuolo-journey-fulton-beer-summary-2017.pdf

Strategies for Water Efficiency

Process for Technical Assistance

Map

- Measure
- Value
- Plan

Maintain

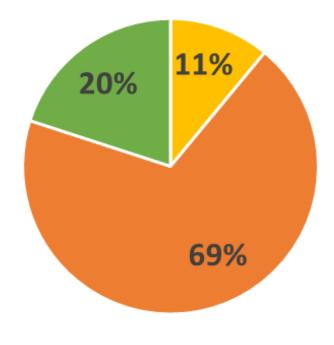
- Repair
- Prevent
- Repeat

Manage

- HP-LF
- High Eff.
- Automate

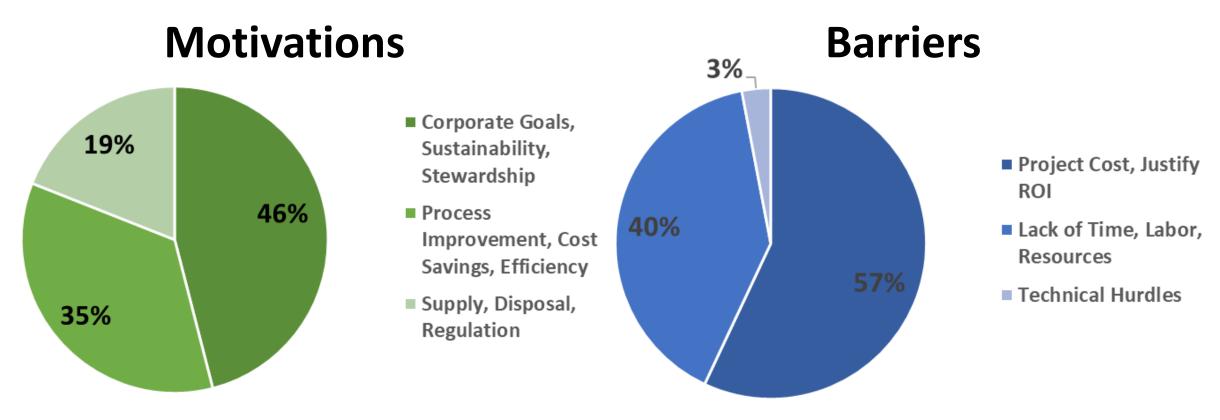
Modify

- Reduce
- Reuse
- Recycle


Water Treasure Hunt Site Assessment Simulation



Supporting Implementation


- Industrial water efficiency focus since 2012
- Motivations study 2018
 - Where is the motivation?
 - What are the barriers?
- How do we act on this knowledge?
 - Identify solutions for a business challenge
 - Build the business case for efficiency
 - Provide information for continuous improvement

Supporting Implementation

Summary

- Billions of gallons of ground water used for industry
 - Critical asset
 - Ample efficiency opportunity
 - Continue attention needed
- Company benefits from industrial water efficiency
 - Reduce costs
 - Support expansion
 - Meet corporate sustainability goals
- Other benefits from industrial water efficiency
 - Avoid more well pumping and water treatment
 - Decrease volume to wastewater treatment facilities
 - Decrease energy and chemical use
 - Increase action to protect and preserve water sources

Summary – Assessor's Role

- Show where water is used
 - Create the site map
 - Identify site opportunities
- Develop actionable recommendations
 - Maintenance short term and ongoing
 - Manage Do what you do better
 - Modify Rethink the process to minimize inputs
- Build the business case for implementation
 - Reduce costs
 - Support expansion
 - Meet corporate sustainability goals

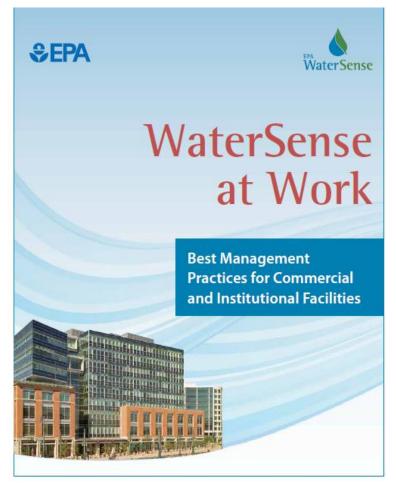
Resources for your project

RESOURCE CONSERVATION PLANNING GUIDANCE

UNDER THE TOXICS USE REDUCTION ACT (TURA)

Published in accordance with MGL c. 21I and 310 CMR 50.00

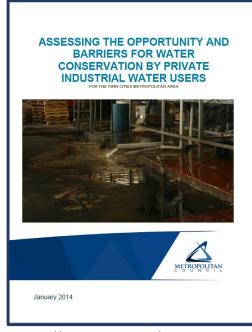
Developed in collaboration with:
Toxics Use Reduction Institute
Office of Technical Assistance and Technology
Executive Office of Energy and Environmental Affairs

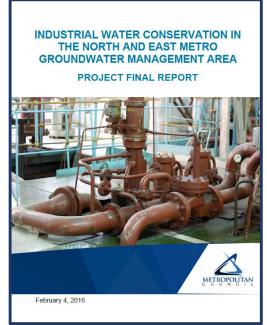

v. 6/26/2018

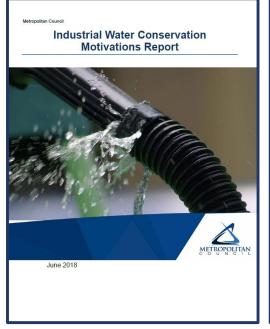
https://www.mass.gov/files/documents/2016/08/rq/rcplguid.pdf

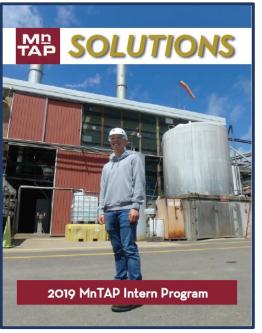
https://www.mass.gov/service-details/water-conservation-techniques-and-resources-for-massachusetts-industries

References for your project




https://www.epa.gov/sites/production/file s/2017-02/documents/watersense-atwork_final_508c3.pdf


http://www.allianceforwaterefficiency.org/ org/ resource-library/default.aspx



MnTAP Water Efficiency Studies/Publications

https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/WATER-SUPPLY-PLANNING/Water-Conservation-by-Private-Well-Industries.aspx
https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/WATER-SUPPLY-PLANNING/Industrial-Water-Conservation-North-East-Metro-G.aspx
https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/WATER-SUPPLY-PLANNING/Industrial-Water-Conservation-Motivations-Report.aspx
http://www.mntap.umn.edu/resources/publications/solutions/ - 2013 - present

MnTAP Water Efficiency Tools

- MnTAP developed 2 new tools related to water efficiency in 2021
- Industrial Water Efficiency Optimization Search Tool
 - Search MnTAP Intern summaries
 - Recommendations by industry and operation
 - Identify related recommendations and case studies
 - http://www.mntap.umn.edu/resources/tools-calculators/water-tool/
- Industrial Water Softening Chloride Reduction Tool
 - BMPs to reduce chloride discharge to WWTPs from industrial water softening
 - Softener assessment strategies
 - Efficient softening systems conserve water
 - http://www.mntap.umn.edu/resources/tools-calculators/chloride-reduction-tool/

Thank You!

Laura M. Babcock, Ph.D.

Director

Minnesota Technical Assistance Program

University of Minnesota

612-624-4678

lbabcock@umn.edu

http://www.mntap.umn.edu

