

Session A - Alternatives Assessment for TUR

Pam Eliason, TURI November 9, 2011 Continuing Education Conference – Marlborough, MA

Overview

- This morning (Session A)
 - Why Alternatives Assessment for TUR
 - Case Study presentation
 - Using Green Screen to assess alternatives for case study
- This afternoon (Session D)
 - Performance and economic considerations
 - Group research

Why Use Alternatives Assessment?

- It's a process that emphasizes safer substitutes that are technically and economically feasible Sound familiar?
- Companies, governments and NGOs are increasingly using this as a pragmatic approach to long term positive change

What's Different?

- Alternatives Assessment emphasizes the importance of identifying SAFER substitutes that are affordable and effective
- The process demands a more rigorous systematic approach to comparing the chemical hazards of substitutes (cannot rely purely on lists to determine if an option is safer)

Overview of Case Study

- Regulatory Context
- Shipping Pallets
- Brominated Flame Retardants
- Concerns about decaBDE
- "Safer" Alternatives

Decabromodiphenyl Ether Flame Retardant in Plastic Pallets
A Safer Alternatives Assessment
Prepared for: Maine Department of Environmental Protection
by:
Pure Strategies, Inc. 47R Englewood Road Gloucester, MA 01930 www.purestrategies.com

Regulatory Context

- 2004 Maine legislature banned products containing pentaand octa-PBDE – included a focus on risk mgmt or ban on decaBDE products if safer, nationally available alternatives identified
- 2007 Maine banned sales of TV and computer housings with decaBDE
- **2009** Environmental Health Strategy Center lobbied for ban of decaBDE in plastic pallets
- Effective 1/1/12 ban mfg, sales or distribution of decaBDEcontaining shipping pallets

Shipping Pallets

- Currently the US uses approx. 3 billion pallets
- Made from a variety of materials
 - Wood, plastic, aluminum, steel, corrugated paper board, and composite wood
- Dominant material:
 - Wood, accounting for approx. 90% of total market
- Second largest material in use:
 - Plastic, 900 million in use, with projected increase in total market share through 2012 (projected 130M in use)

User Purchasing Patterns

Pallet Material	% Purchasing Pallets Made of Each Material (may buy multiple types)
Wood	92%
Plastic	33%
Engineered wood (e.g., plywood)	15%
Cardboard/corrugated	10%
Metal	6%
Other	3%

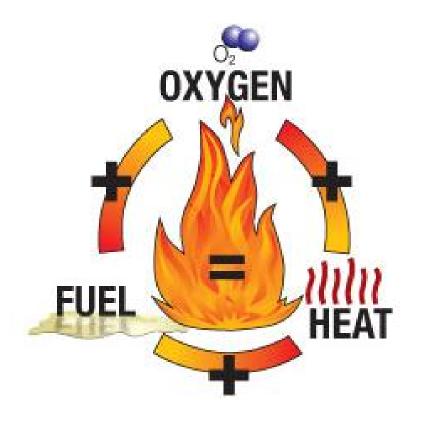
Uses of Shipping Pallets

- 30% of total pallet market– 48x40 pallets for grocery
- Others:
 - Telecom
 - Dept of Defense
 - Industry drums for chemicals
 - Food beverages, dairy
 - Automotive
 - Building products

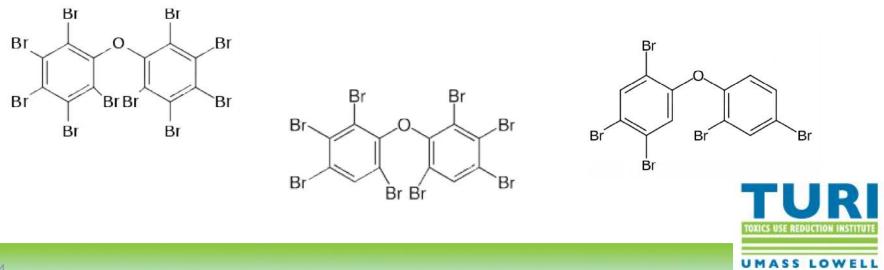
Pallet Use Models

- Closed Pool
 - End users manage and control the pallets at a single site or group of sites
- Open Pool
 - Leasing system, common among manufactures and distributors sending products to warehouses for retail and other companies
 - Common for rapid-turnover consumer goods such as groceries, cleaners, consumer electronics, etc

Critical Performance Needs


- Fire Safety risk of severe fires no greater than that posed by wood pallets
- Load depends on the application, commonly set by appropriate trade association
- **Durability** able to withstand multiple uses

Mechanisms of Flame Retardancy


- Create barrier to isolate oxygen from fuel
- Cause chemical reaction that reduces heat
- Choose materials that do not act as fuel

Brominated Flame Retardants

- Polybrominated diphenyl ethers (PBDEs)
- Deca (10), Octa (8), Penta (5)
- Used in a variety of plastic, electronic, textile, upholstery and building products

Concerns with DecaBDE

- PBT
- Targets liver, kidneys, spleen and fat
- Potential thyroid and neurodevelopmental toxicity
- On EU's priority list of endocrine disruptors
- Decomposes into octa and penta congeners these show greater acute and chronic effects

Maine's Definition of "Safer" Alternatives

• Reduce potential for harm to human or environmental health

cannot be PBT, brominated or chlorinated

- Serve functionally equivalent purpose for fire safety and performance
- Are commercially available on national basis
- Are not cost prohibitive

What Alternatives Can You ID?

 Considering Maine's definition of "safer alternatives" to decaBDE, let's get some ideas up on the flip chart

Identifying and Prioritizing Alternatives

Comparing Alternatives

Comparative Chemical Hazard Assessment

- Focus at the chemical level
- More than one chemical to assess
- Focus on chemical hazard (environmental, health, and safety)

Business Reasons for Comparative Chemical Hazard Assessment

- **Reason #1**: Replacing materials multiple times is expensive and undesirable.
- **Reason #2**: Prioritizing material substitution focuses efforts on highest impact while considering the complexities of supply chain management and finite resources.
- **Reason #3**: Replacing materials with alternatives that have a better EH&S footprint makes sense.
- Reason #4: Clearly communicating across the supply chain lowers implementation costs

Many Different Tools Available

• Lists

- TUR reportable chemicals
- Restricted Substance Lists
- Phase-out lists
- Screening Methods
 - P2OASys
 - Green Screen
 - DfE

HP Identifying safer substitutes for BFRs, CFRs and PVC

Platform for Walmart chemical screening program

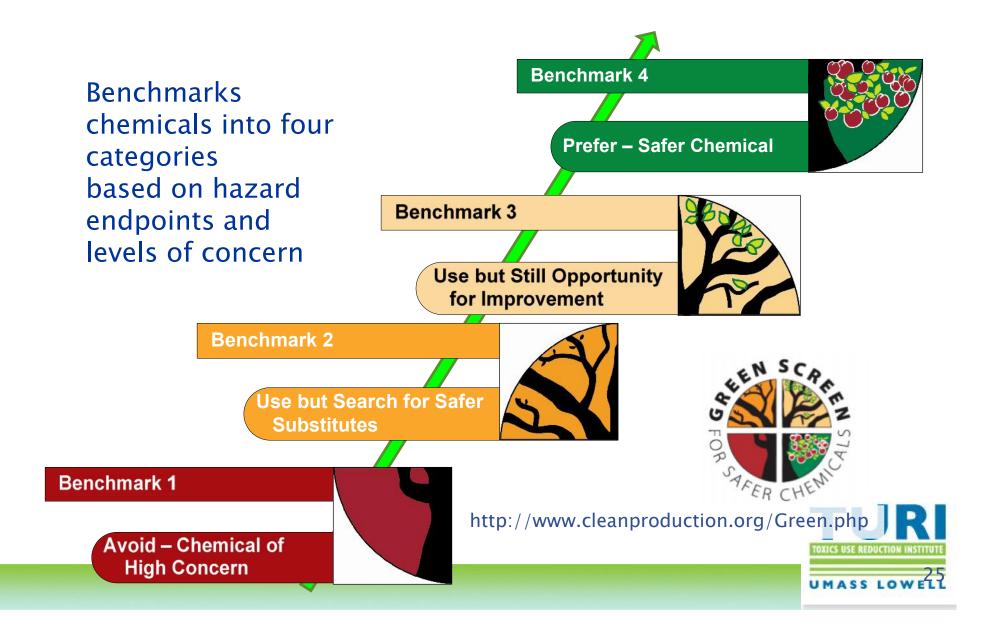
MAINE MAY

Basis for alternative assessments in state regulatory programs

California

DE750

Aligning hazard thresholds with EPA

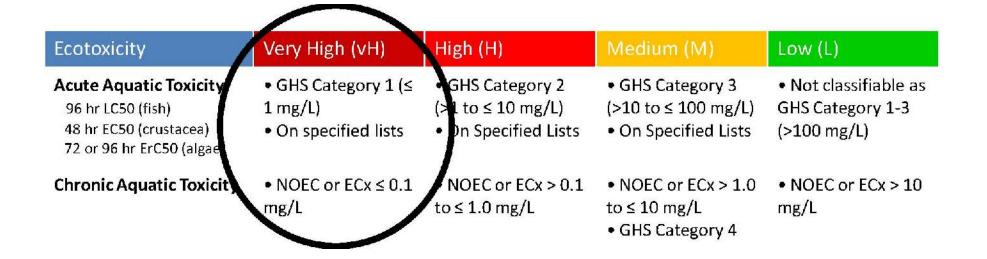


Green Screen Overview

- Comparative chemical hazard assessment tool
- Makes use of available toxicological data, quantitative structure activity relationships (QSAR), expert judgment and use of analogs; indicates weight of evidence (i.e. test data versus estimated values) (H, h)
- Looks at individual hazards and *combinations* of hazards for an overall chemical benchmark score

Green Screen for Safer Chemicals

Green Screen Process


- 1. Collect data and fill out hazard summary table for parent chemical and feasible transformation products (degradation, metabolites, etc. depending on EOL)
- 2. Apply the benchmarks
- 3. Consider the context and compare alternatives
- 4. Take action based upon the results

Green Screen Hazard Assessment Endpoints

Environmental Fate	Environmental Toxicity	Human Health Priority Effects	Human Health Non-Priority Effects	Physical Properties
Persistence (includes evidence of long range transport)	Acute Aquatic Toxicity	Carcinogenicity	Acute Toxicity	Explosivity
Bioaccumulation (includes bio- monitoring or env'l studies)	Chronic Aquatic Toxicity	Mutagenicity – Genotoxicity	Systemic or Organ Effects	Flammability
		Reproductive toxicity	Immune System Effects	For v.2.0 – Particle size, form, (i.e. respirable)
		Developmental toxicity	Corrosion or Irritation of Skin/Eyes	For v.2.0 – Solubility
		Endocrine Disruption	Sensitization of Skin/Respiratory System	
	27	Neurotoxicity / Neurodevel tox		7

Assign L, M, H, vH Rating for Each Endpoint

GHS: Globally Harmonized System of classification and labeling of chemicals.

Green Screen Template

Green Screen (v.1.0) Hazard Profile

						luman	Ecotox.		Fate		P-C	hem						
			Pr	riorit	y Ef	fects				in	u							
Chemical	CAS#	Carcinogenic	Mutagenic	Reproductive	Developmental	Endocrine Disruption	Neurological	Acute Toxicity	Systemic/Organ Effects	Sensitization (skin or respiratory)	Irritation/Corrosion (skin or eyes)	Immune System	Acute	Chronic	Persistence	Bioaccumulation	Exposivity	Flammability
Chemical Formulation X																		
Chemical Constitutent A		Μ	Μ	L	L	М	М	L	L	Н	Н	L	Н	L	Μ	Μ	L	L
Chemical Constitutent B																		
Chemical Constitutent C																		
Breakdown Products																		
Metabolite Y																		
Combustion Byproduct Z																		
Degradation Byproduct V															Same			

OXICS USE REDUCTION INSTITUT

UMASS LOWELL

Benchmarking DecaBDE

							Huma	n He	ealt	n Eff	ects					Eco	tox.	Fa	ite	Breal	kdown		
	CAS#								Priority Effects								ts						ducts
Chemical		% in Formulation	Carcinogenic	Mutagenic	Reproductive	Developmental	Endocrine Disruption	Neurological	Acute Toxicity	Systemic/Organ Effects	Sensitization (skin)	Sensitization (respiratory)	Irritation/Corrosion (skin)	Irritation/Corrosion (eyes)	Immune System Effects	Acute	Chronic	Persistence	Bioaccumulation	Metabolites	Degradation Products		
Decabromodip	ohenyl ether	(deca	aBDI	E) - C	CAS#	<i>‡</i> 116	63-19-	5							<u> </u>				<u> </u>				
DecaBDE	1163-19-5	97	М	L	L	М	М	м	L	L	L	nd	L	L	nd	L	L	vH	М	penta- to nona- BDE	tri- to nona- BDE		
Breakdown Pr	oducts									<u> </u>													
PentaBDE	32534-81-9		nd	L	Μ	Μ	Н	М	L	н	L	L	Μ	Μ	nd	н	н	vH	vH				
OctaBDE	32536-52-0		nd	L	М	Н	М	м	L	Η	L	nd	L	L	nd	L	L	vH	м	nd	low er PBDEs		
Bold text = base	ed on experim	ental d	lata.	Blac	k ita	alics	text =	base	ed or	ana	log da	ata o	r exp	ert ju	udgm	ent.					UI		

GreenScreen[™] for Safer Chemicals v 1.2 Benchmarks

Start at Benchmark 1 (red) and progress to Benchmark 4 (green)

e. High T (Group I Human)

Avoid—Chemical of High Concern

Presenting the Results --Simple 1-4 score (1=bad, 4=good)

- Once generated, the simple score can be used by others even if they have no technical training
- All of the underlying hazard classification (H-M-L) data remains visible to help differentiate between two chemicals with the same score
- For official Green Screen assessments, expert knowledge is required to generate and peer review the score
- The method and guidance can be applied to get informal score for internal decision-making

Material-Level Benchmarking

- Material score = lowest constituent or breakdown product score
- Example: Material A
- Ingredients:
 - 1% Chemical #1 = Benchmark 1
 - 39% Chemical #2 = Benchmark 3

TURE REDUCTION INSTITUTE

– 60% Chemical #3 = Benchmark 4

Conduct Comparison

- Using information on handouts ...
- Conduct Green Screen comparison of alternatives to decaBDE for plastic pallets

Discussion

- So how did that go?
- After lunch we'll take what TUR Planners know so well – assessing technical and economic feasibility of options – and apply it to this case study

