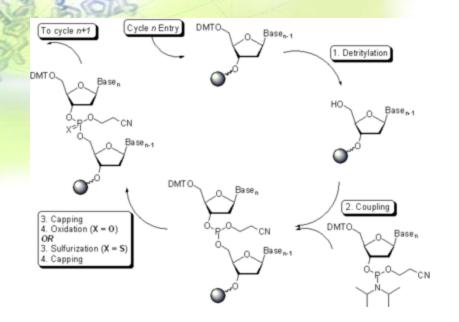
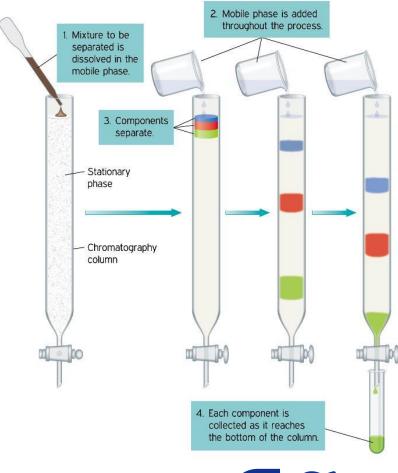
G ChemGenes CORPORATION

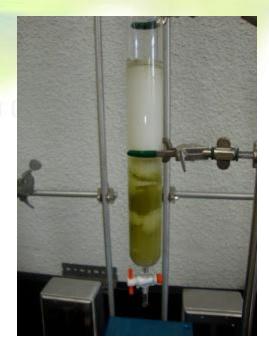

established in 1981

Manufacturer of the widest variety & highest quality Phosphoramidites & Solid Supports for the biopharmaceutical, diagnostic, & academic markets

www.ChemGenes.com

Our Manufacturing Processes


- Chemical Synthesis of Nucleic Acid Compounds and are required to be very High Quality
- Processes include Organic Reactions (Phosphitylation), Solid Support Derivatization & Purification Techniques



 Purification Processes include Extraction, Crystallization, Precipitation, Column Chromatography

Column Chromatography

Our Responsibility

- Business and Institutions have a fiduciary responsibility to the environment and workplace safety
- Most business owners want to be in compliance but often are not aware or do not understand the regulations
- Government Resources (OTA) and Private Consultants guide us!

Our History of TUR - 2008

- First TUR Plan filed in July 2008, prepared by Goldman Environmental
- Scope covered Acetone, Chloroform, Ethyl Acetate, and Hexane. Other solvents below reportable quantity threshold
- Focus on Column Chromatography: Design on Experiments... reformulation to improve production efficiency (report mentions possibility of recycling)
- An average 1kg batch of final product used approximately 22kg of silica gel and 160L of solvent!
- Some "Bulk" products required multiple chromatography steps...

Our History of TUR - 2010

- 2010 TUR Plan focused on Pressure Chromatography for Bulk Production
- Scope covered:
 - Chloroform,
 - Ethyl Acetate, and
 - Hexane
 - (Acetone below threshold)

Solvent Reductions

	AL B	31 8 18		the second		
	2007	2008	2009	2010	2011	2012
	30. 12 31	300			a second	
Chloroform	82706	75698	40374	37106	36948	23946
Ethyl Acototo	48726	48017	43810	26840	39936	37256
Ethyl Acetate	40720	40017	43610	36840	39930	37230
Hexane	26517	25507	15846	17114	22120	17108
pro. Ratios	NA	1.15	0.85	0.9	1	1

2012 TUR Plan focuses on Solvent Recycling for Bulk Production → reduction of substituted Ethyl Acetate and Hexane

Challenges Solvent Recycling

- Justification of Cost Benefit (Labor, Energy, Yield Loss)
- Quality of Recovered Solvent including Cross Contamination possibility
- Cost of Analytical Component
- Qualification Process and Time

Qualification Process

150000

50000

0.07-0.00

8 **8**

6.5 7.0 7.5 8.0 8.5 9.0 9.5

8

9

5.5 6.0

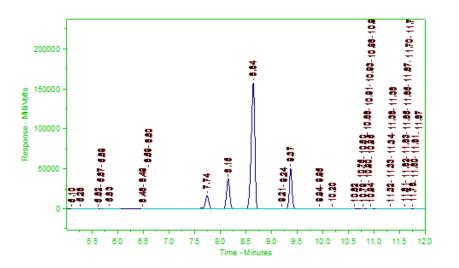
E,

5

MIINotts

Response

Hexane(s) GC Result


11.87-11.73-11.76

- 10.86- 10.88- 10.87

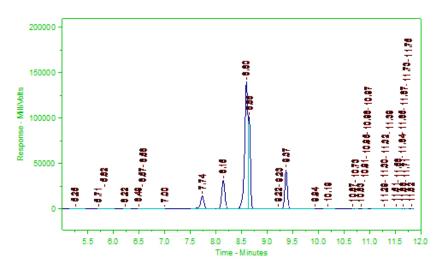
è

10.0 10.5 11.0 11.5 12.0

11.22, 11.30 11.64 11.86

RT = 7.7min, Hexane Isomer (2-MethylPentane) RT = 8.2min, Hexane Isomer (4-MethylPentane) RT = 8.6min, n-Hexane

RT = 9.4min, Hexane Isomer (MethylCyclopentane)


RT = 8.8min, Ethyl Acetate (appears as merged peak with n-Hexane)

Time - Minutes

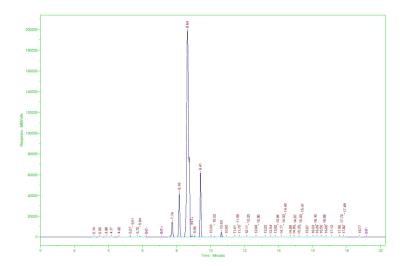
922-920

Qualification Process

Hexane(s) + Ethyl Acetate GC Result

RT = 7.7min, Hexane Isomer (2-MethylPentane)

RT = 8.2min, Hexane Isomer (4-MethylPentane)


RT = 8.6min, n-Hexane

RT = 8.8min, Ethyl Acetate (appears as merged peak with n-Hexane)

RT = 9.4min, Hexane Isomer (MethylCyclopentane)

Recycled Solvent System

Fractional Distillation

- Instrument Purchased
 from CBG Technologies
- TechnoClean F-2500, Fractional Distillation System
- Recommended by Gus at OTA

Fractional Distillation, specs

- 25gal capacity (94.5L)
- Air Cooled no water hookup
- Redundant Safety features and auto shut down
- Auto Fill Pump no need to pour
- HDPE Bag for easy waste removal
- claim >99.9% purity of recovered solvent
- Custom Programming for multiple solvents and solvent systems

Fractional Distillation, results

- Ethyl Acetate and Hexane(s)
- Average batch size ~45L
- Maximum Batch Size = 75L
- Average recovery of >90-95%

results, continued

- Re-Used in DNA Cytidine (dC-Ac CEP) compound and 2 batches of a Modified DNA compound (2'-F-dU CEP)
- Batch Size of each was 1kg each

 Both Batches passed and met the same rigid specifications for release!

Cost Benefit

process A	ratio	cost / L	ext	ended
Ethyl Acetate	30	\$ 3.00	\$	0.90
Hexane	70	\$ 2.00	\$	1.40
			\$	2.30
process B	ratio	cost / L	ext	ended
Ethyl Acetate	80	\$ 3.00	\$	2.40
Hexane	20	\$ 2.00	\$	0.40
			\$	2.80
			\$	2.80

Savings per Cycle								
	Usage (L)	recovery %	recover (L)	RM s	savings	Waste	Savings	
rxn	10	0						
A	120	92	110.4	\$	253.92	\$	55.20	
В	90	92	82.8	\$	231.84	\$	41.40	
				\$	485.76	\$	96.60	
		C.	avings for	Total	Cyclor	¢	582.36	
			avings for	ισιαι	cycie.	Φ	302.30	

17 4

\$

\$ 33,874.88

68 total cycles 498.16 net savings

Additional Costs							
cost of equipment	\$ 25,5	500.00	one time	cost of S3000			
utilities	\$	3.20	per day	3.20 per batch per CBG			
Labor (1hr/day - load, empty, clean)	\$	32.00	per day				
inner liner bags	\$	4.00	per bag	2 uses per change, PP30N \$200	/25 units		
Drying Station (dessicant, alumina)	\$	-	\$/L	500L/change - \$350/unit			
cost of GC or GC/MS analysis	\$	45.00	per sample		-		
Total Cost per Cycle:	\$	84.20				ducts on N	
. ctal cost per offici	•	0.1120			est. cyc	les per pro	oduct after 1st i

ChemGenes CORPORATION

Savings

Parameters

Solvent X	\$3.20/L
Solvent Y	\$2.15/L
Labor rate – 1 hour at \$30/hr	\$30.00/batch
Inner liner bags - 10 uses/change	\$0.80/batch
Quality Control – GC-MS	\$45.00/sample
Maintenance \$1000/yr & 200runs/2yr	\$7.95/batch
Electricity Consumption	\$0.80/batch
Waste Disposal: 75 liners/25gal pail	\$5.00/batch

Hazardous waste cost \$149.50/200L (including transportation, disposal, regulatory fees, insurance costs)

Usage and Costs for Four Months	Quantity/Costs
Input solvent	1339 L
Output solvent	1308 L
% recovery	97.70%
Material and Waste Savings	
With 97.70% return, Solvent savings	\$3,475.76
Hazardous Waste Savings	\$1,000.90
Total Material and Waste Savings:	\$4,476.67
Labor and QC Costs	
Labor	\$810.00
QC	\$1215.00
Total Labor and QC Costs:	(\$2,025.00)
Operation and Maintenance Costs	
Maintenance	\$214.65
Tank Liners	\$21.60
Electricity	\$107.20
Waste Disposal	\$135.00
Total O&M Costs:	(\$478.45)
Total Savings:	\$1,973.22
	Over 27 batches or
	\$73.27 per batch

G ChemGenes CORPORATION

established in 1981

Special Thanks to: Toxic Use Reduction Institute-UMASS Lowell Office of Technical Assistance Goldman Environmental

www.ChemGenes.com