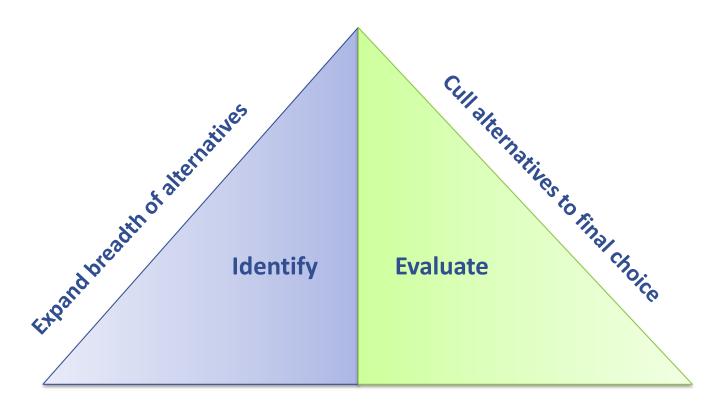
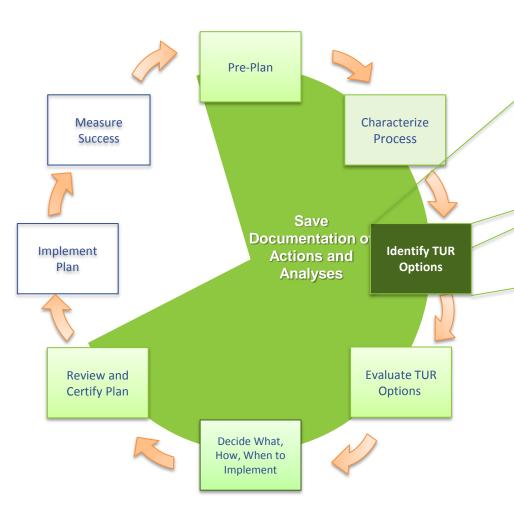


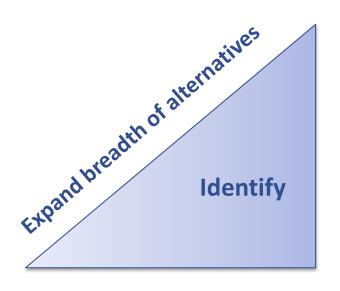
TUR Options Identification and Evaluation

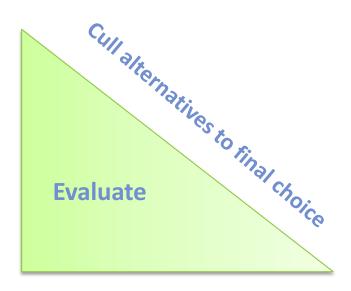

Pam Eliason, Toxics Use Reduction Institute pam@turi.org

Linda Swift, Capaccio Environmental Engineering Iswift@capaccio.com


TUR Option ID and Evaluation Process For each toxic in each production unit:

Options Identification




- Identify as many TUR options as possible
- Use The 6 TUR techniques as a framework for process

Introduction to Identifying TUR Options

- Creative phase
- Generate complete list of TUR opportunities
 - Obvious opportunities
 - Hidden opportunities
- Costs / benefits

TURA Requirements for TUR Option Identification (310 CMR 50.45)

The Toxics Use Reduction Act requires companies to include in their plan a written description of the procedure they used to identify technologies, procedures or training programs for *potentially achieving* TUR for each production unit. The written description of the TUR options ID procedure must include:

- Consideration of the six TUR techniques
- Personnel involved in the TUR options ID process
- Description of information sources consulted
- Description of techniques used for gathering information
- List of technologies, procedures or training programs identified

The Six TUR Techniques

Input Substitution

Product Reformulation

Production Unit Redesign/Modification

Production Unit Modernization

Improved Operations and Maintenance

Recycling which is integral to the process

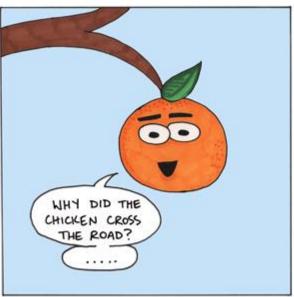
TUR Planning Team

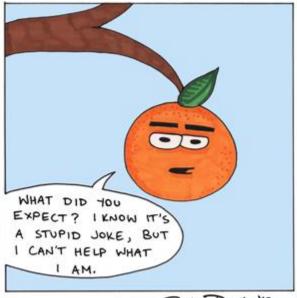
- Who should be on the team
- When do you engage the various members of the team

 Create meeting agendas, including objectives of the meeting and anticipated next steps, to help ID who should be in the room

Identifying TUR Options

- Brainstorm with team
- Literature review
- Vendors
- Industry associations
- Regulatory agencies (OTA)
- Customers
- Other





Going Further than the Low Hanging

Betsy Brot 12

- Be systematic
- Revisit past ideas
- Enlist the right team

Be Systematic in your Evaluation

Create a unique option identification #

Identify production unit, toxic chemical and TUR technique

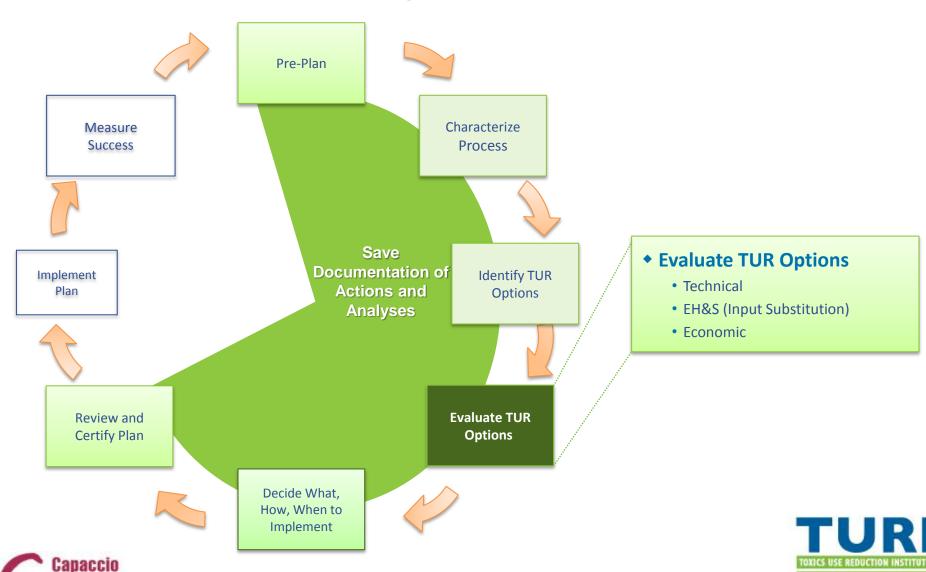
Assure the option:

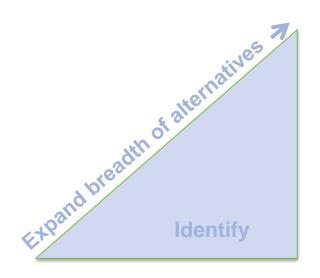
- Meets definition of TUR
- Is technically feasible

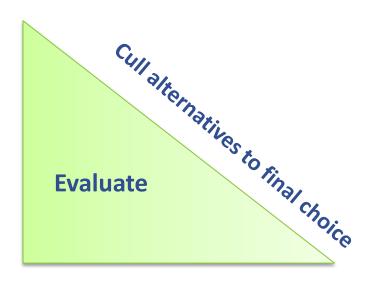
Determine if implementation of the option would:

- Create process concerns
- Raise employee H&S concerns
- Create potential environmental impacts
- Cause additional regulatory burden

Acme Electronics


 Question #1: Identify potential TUR options for each of the TUR techniques


Evaluate TUR Options

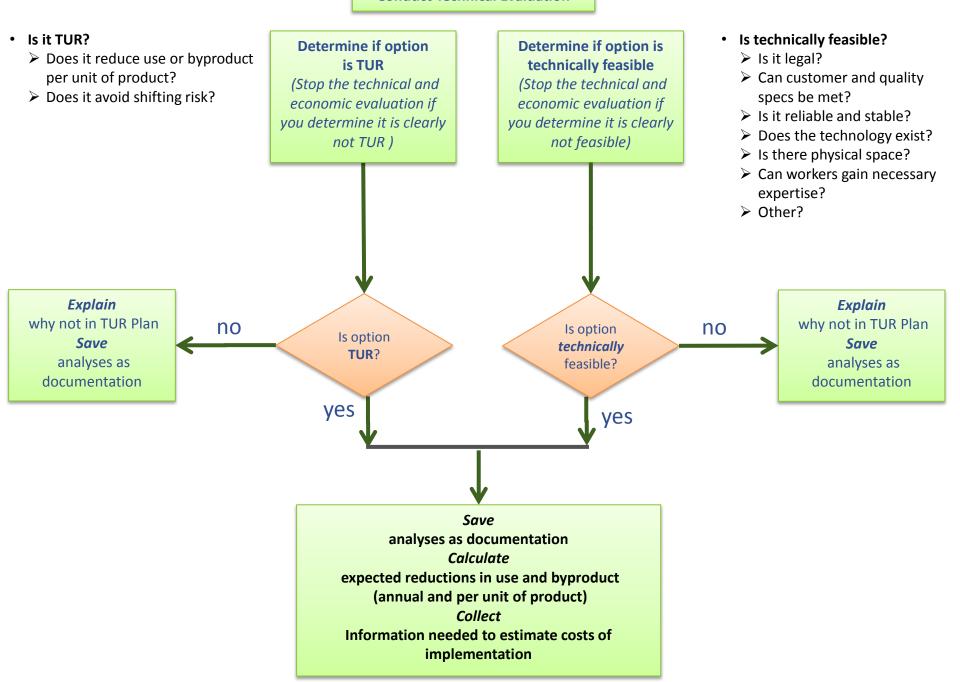

Environmental Engineering, Inc.

UMASS LOWELL

TUR Option ID and Evaluation Process For *each* toxic in *each* production unit:

Eliminate Options

- Technically infeasible
- Not TUR


Evaluate Remaining Options

- Technical evaluation
- EH&S evaluation
- Economic evaluation

50.46: Technical Evaluation of Toxics Use Reduction Techniques

- 1) Toxics users shall evaluate the technical feasibility of each technology, procedure, or training program (TUR option) listed in the plan:
 - a) Whether the TUR option constitutes toxics use reduction
 - b) Calculate the expected reductions resulting from implementation of the TUR option
 - 1. Expected reductions in the amount of toxics used in each production unit;
 - 2. Expected reductions in the amount of toxics used per unit of product for each production unit;
 - 3. Expected reductions in the amount of toxics generated by each production unit;
 - 4. Expected reductions in the amount of toxics generated as byproduct per unit of product for each production unit.
 - c) Evaluate the relationship between the TUR option being evaluated, and other applicable laws and regulations, including but not limited to, whether implementation of the option will violate any other law or regulation.

Conduct Technical Evaluation

Technical Evaluation ... in English

- Is it TUR?
- Calculate Expected Reductions
 - Toxics used in production units and by unit of product
 - Toxics generated in production units and by unit of product
- Evaluate the impact on other regulations/laws if the TUR option is implemented

Technical Infeasibility "Off-Ramp"

50.46: Technical Evaluation of Toxics Use Reduction Techniques

- 2) Toxics users need not complete the evaluation of a particular TUR option if, during the evaluation, the toxics user determines that the TUR option being evaluated is not appropriate for any of the following reasons:
 - a) the technique is clearly technically infeasible;
- Technical infeasibility determination should be in accordance with your business' existing methods for evaluating projects
- Use your technical expertise to evaluate
- Document your process!

What is "Technically Infeasible?"

Equipment

- Not available
- Cannot be developed

Workers

Inadequate skills readily available

Product quality

 Change would render quality unacceptable

Regulatory

- Impacts ability to meet other regs
- Unacceptable increase in regulatory burden

Qualitative Issues

Productivity

Public Image

Product Quality

Market Share

Stakeholder Relations

Liabilities

- Storage and Disposal
- Real Property Damage
- Civil Actions/ Toxic Tort Suits
- Fines and Penalties
- Regulatory Impact

50.46: Technical Evaluation of Toxics Use Reduction Techniques

- (4) For TUR options that the toxics user decides to implement, the plan shall include:
 - a) a description of the TUR option to be implemented;
 - b) the anticipated costs and savings associated with TUR option
 - c) the expected reductions in the amount of toxics and the amount of toxics generated as byproduct resulting from implementation of the TUR option
 - d) an implementation schedule.

Implementation Schedules

- Document progress of implementation for each option
- Build into your existing processes

For example:

Option ID	Description	Responsible Party	Tracking Tool	Schedule	Progress

Acme Electronics

Question #2

- Performance criteria for TUR options identified
- Where would you find information
- What is sufficient justification to list an option as "technically infeasible"?

EH&S Assessment Considerations

Is this a preferable solution/material?

- Comparison with existing material
- Comparison with corporate/organizational criteria
- Benchmarks

Health and environmental effects

Significant life cycle effects (qualitative)

Significant potential exposure

Uncertainty

What can we do to Eliminate Regrettable Substitutes Faster?

PBTs

Carcinogens

CMRs

Restricted Substances Lists

Consider criteria for screening contaminants, mixtures, etc.

TURI Alternatives Assessment

- Screening criteria include: PBT, carcinogenicity,
 SAB listing of more hazardous chemicals
- Collected environmental, health and safety data for alternatives
- Conducted research into technical and economic feasibility
- Information available at:
 - www.turi.org/alternatives_assessment

Principles for Alternatives Assessment

Reduce Hazard

Minimize Exposure

Use Best Available Information


Require Disclosure and Transparency

Resolve Trade-Offs

Take Action

TURI EH&S
Data Sources
Guide

Pollution
Prevention
Options
Assessment
System
(P2OASys)

Green Screen

EPA Design for Environment

Tools to Avoid Regrettable Substitutes

TURI's Library Guide for EH&S Data Resources

TURI - Toxics Use Reduction Institute

- Authoritative sources for chemical hazard data
- Regulatory drivers
- Tools, databases and models
- Go to: http://guides.turi.org/index.php
 - >EH&S data resources option on left hand box

P2OASys EHS Evaluation

- Pollution Prevention Options Analysis System
 - www.turi.org/p2oasys
- Developed to support TUR Planners systematically examine potential environmental and worker impacts of TUR options

- Compares TUR options with company's current technology based on quantitative and qualitative factors
- Weighted scores to 10 higher scores are <u>less</u> safe options

Green Screen

Benchmark 4 Developed by Clean **Production Action** Prefer - Safer Chemical 17 environmental, Benchmark 3 health and safety **Use but Still Opportunity** for Improvement criteria Benchmark 2 se but Search for Safer Substitutes Benchmark 1 Avoid – Chemical of **High Concern**

http://www.cleanproduction.org/library/Green_Screen_Report.pdf

Green Screen Benchmarking DecaBDE

			Human Health Effects												Ecotox.		Fate		Breakdown		
			Priority Effects							ects	tory)	itory)	(skin)		Effects					Products	
Chemical	al CAS# #2AD % in Formulation		Carcinogenic	Mutagenic	Reproductive	Developmental	Endocrine Disruption	Neurological	Acute Toxicity	Systemic/Organ Effects	Sensitization (skin)	Sensitization(respiratory)	Irritation/Corrosion (skin)	Irritation/Corrosion (eyes)	Immune System Eff	Acute	Chronic	Persistence	Bioaccumulation	Metabolites	Degradation Products
Decabromo	Decabromodiphenyl ether (decaBDE) - CAS# 1163-19-5																				
DecaBDE	1163-19-5	97	M	L	L	M	M	M	L	L	L	nd	L	L	nd	L	L	vH	M	to nona-	tri- to nona- BDE
Breakdown	Breakdown Products																				
PentaBDE	32534-81-9		nd	L	М	М	н	М	L	н	L	L	M	M	nd	н	н	νH	νH		
OctaBDE	32536-52-0		nd	L	М	н	M	М	L	н	L	nd	L	L	nd	L	L	νH	М	nd	lower PBDEs
Bold text = ba	Bold text = based on experimental data. Black italics text = based on analog data or expert judgment.																				

Design for the Environment

- Developed by U.S. EPA
- The DfE Safer Product Labeling Program
- DfE Screens for Safer Chemical Ingredients
- DfE's Alternatives Assessments program

DfE Alternatives Assessment Results

										ř		atic	Envi		F				
				H	uman	Healtl	h Effec	ets	.		Tox	icity	mental		Exposure Considerations				
Chemical	CASRN	Acute Toxicity	Skin Sensitizer	Cancer Hazard	Immunotoxicity	Reproductive	Developmental	Neurological	Systemic	Genotoxicity	Acute	Chronic	Persistence	Bioaccumulation	Availability of FRs throughout the lifecycle for reactive and additive FR chemicals and resins ²				
Reactive Flame Retardant Chemical	ls ²																		
Tetrabromobisphenol A (TBBPA) (A	Albemarle, Che	intura,	and o	others))3										Manufacture				
TBBPA	79-94-7	\mathbf{L}	L	L	L	L	M	L	L	L	H	H	M	L	■ Electronics Manufacture				
DOPO (6H-Dibenz[c,e][1,2] oxaphos	phorin, 6-oxide) (San	ko Co	., Ltd.	and o	thers)									(Recycle, Disposal) of FR Realn				
DOPO	35948-25-5	L	L	L	L	L	L	L	L	L	M	M	L	L	Sale and Use of Electronics Manufacture of				
Fyrol PMP (Aryl alkylphosphonate)	(Supresta)														Manufacture of PCB Laminate and incorporation into				
Fyrol PMP	Proprietary	L	L	L	L	L	L	L	L	L	L	L	H	L	Electronics				
Reactive Flame Retardant Resins ²																			
Reaction product of TBBPA - D.E.R. 538 (Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo-, polymer with (chloromethyl)oxirane and 4,4'-(1-methylethylidene)bis[phenol]) (Dow Chemical)													Manufacture of FR						
D.E.R. 538	26265-08-7	L	M	M°	L	M^{\Diamond}	M^{\Diamond}	L	L	M	L	L	M	L	Electronics Manufacture (Recycle, Disposal) of FR Resin				
Reaction Product of DOPO - Dow X	Z-92547 (reacti	ion pro	duct	of an e	роху	pheny	l novo	lak wi	th DO	PO) (Dow C	hemio	al)		Sale and Use of Electronics				
Dow XZ-92547	Proprietary	L	M	M ^⁰	L	M^{\Diamond}	M^{\Diamond}	L	L	M°	L	L	H	L	Manufacture of Laminate				
Reaction product of Fyrol PMP with	bisphenol A, p	olyme	r with	epich	lorohy	drin (Repre	sentat	tive Re	esin)					Manufacture of PCB and Incorporation Into				
Representative Fyrol PCB Resin	Unknown	L	L	M^{\Diamond}	L	M^{\Diamond}	M^{\Diamond}	L	L	M^{\Diamond}	L	L	H	L	Electronics				

¹ The moderate designation captures a broad range of concerns for hazard, further described in Table 4-3.

The EU has published a comprehensive risk assessment for TBBPA in reactive applications. This risk assessment is a valuable source of information for choosing flame retardants for printed circuit board applications.

² Reactive FR chemicals and resins may not completely react, and small amounts may be available during other parts of the lifecycle.

TUR Planners are the Experts!

- Manufacturers, retailers and government agencies are requiring alternatives assessments
- Alternatives assessment is a Walmart safer, effective and affordable a Walmart
- YOU are the expert in this

 TUR Planner has very marκeτa REACH

 REACH

 REACH

 REACH

Thank you

QUESTIONS?

