A Briefing on Carbon Nanotubes

Mike Ellenbecker (TURI)

Molly Jacobs (U Mass Lowell – Lowell Center for Sustainable Production)

May 18, 2016

Overview

- 1. Essential background "what are CNTs?"
- 2. Massachusetts Context
- 3. Overview on the state of the science ES&H
- 4. Regulatory landscape

Engineered Carbon Nanotubes – what are they?

- Discovered in 1991
- Divided into 2 broad categories:
 - Single-walled CNTs (SWCNTs)
 - Multi-walled CNTs (MWCNTs)

- Important: CNTs are not a single material. ~50,000 SWCNTs and likely even more potential combinations of MWCNTs
 - Vary based on size, shape, chemical composition, reactivity, etc.

Major Materials

2006 2011 2013

Figure 5. Numbers of products associated with specific materials.

New York Times, 1 Oct 2015

"IBM Scientists Find New Way to Shrink

Transistors"

- CNT field effect transistors
- Increase speed and/or reduce power use by a

factor of 7

CNTS: One of the superstars of the nanotechnology revolution

Emerging as substitutes for chemical toxicants

Fouling release coatings

Anti-fouling marine paints [substitutes for tributyltin, copper boat paints, etc]

Flame retardant coatings for non-metallic substrates

Flame retardants for electronics, wire/cable, textiles, foams [substitutes for halogenated flame retardants]

The Project on Emerging Nanotechnologies

MA is among the top 5 in the country for commercial and R&D activity on nanomaterials/nanotechn ology ⁸

Commercial Use Activity of Carbon Nanotubes in MA

Manufacturing/Production

- Hyperion Catalysis Cambridge [among the top international suppliers]
- Nano C Westwood
- Nano Lab Waltham
- Use in product manufacturing
- Nantero (memory devices) Woburn
- Alpha Szenzor (biosensors) Carlisle
- Ambit Corp (electronic and optical devices) Ashland
- Eikos (coatings) Franklin

R&D

Busek (CNT manufacturing for aerospace applications) – Natick

Source: Nanowerk & website research Apr⁹2016

Use Volume?

	Manufacturers	Annual produc- tion capacity (Metric tonnes)	Processing routes	Country
SWCNTs	Unidym, Inc. (acquired by Wisepower Co.), http://www.unidym.com	1.5	High-pressure carbon monoxide (HiPco)	USA
	Toray Industries, Inc. http://www.toray.com	1.5	CCVD	Japan
	Mitsubishi Rayon Co. Ltd. http://www.mrc.co.jp/english/index.html	1.2	CVD	Japan
	SouthWest NanoTechnologies Inc. http://www.swentnano.com	1.0	Cobaltmolybdenum catalyst (CoMoCAT)*	USA
	Kleancarbon Inc. http://www.kleancarbon.com	1.0	CVD	Canada
MWCNTs	Showa Denko K.K http://www.sdk.co.jp/english	500	CCVD	Japan
	CNano Technology Limited http://www.cnanotechnology.com	500	CCVD	USA
	Nanocyl S.A., http://www.nanocyl.com*	400	CCVD	Belgium
	Bayer MaterialScience AG http://www.bayermaterialscience.com	260	CCVD	Germany
	Arkema Inc. http://www.arkema-inc.com	50	CCVD	France
	Hyperion Catalysis International, Inc. http://www.hyperioncatalysis.com	50	CVD	USA

Table 2: Major Carbon Nanotubes Producers and their Annual Production Capacity for 2010. *

Source: Nanowerk, Oct 2011: http://www.nanowerk.com/spotlight/spotid=23118.php

Research & Development Activity of Carbon Nanotubes in MA

Dozens of R&D programs

within MA universities

Co-op & Experiential Learning

Northeastern University

Home > News & Events > News > Building Carbon Nanotubes

College of Engineering

CNT Toxicity

- Many studies published in the last 10 years
- End point studied:
 - Fibrosis
 - Inflammation
 - Lung tissue
 - Cardiac tissue
- Mesothelioma

Asbestos

nanocomp source-4-1 0608'.tif CNT source 0608'-4-1 Cal: 955.975pix∕micron

100 nm HV=100kV Direct Mag: 20000x

TEM Mode: Imaging Microscopist: Candace

CNTs

CNTs cause Mesothelioma?

- Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Poland, et al., Nature Nano., 2008.
- Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube, Takagi, et al., J. Toxicol. Sci, 2008.

Mercer, et al., Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes, *Part. Fibre Tox.*, 2010.

CNTs cause Mesothelioma? Cont.

Poland: "Here we show that exposing the mesothelial lining of the body cavity of mice, as a surrogate for the mesothelial lining of the chest cavity, to long multiwalled carbon nanotubes results in asbestos-like, length-dependent, pathogenic behaviour... Our results suggest the need for further research and great caution before introducing such products into the market if long-term harm is to be avoided."

Dec 2014 – IARC designates "certain MWCNTs" as 2B, Suspect Human Carcinogen

Fiber Morphology May be Important

In animal studies thus far:

- SWCNTs do not cause mesothelioma
- Thin (d < 15 nm) MWCNTs ditto
- Thick (d > 150 nm) MWCNTs ditto
 - But all commercially available MWCNTs :
 15 nm < d < 150 nm
- Short (L < 1-5 μm) MWCNTs ditto

Can we make them all short?

Functionalization can Affect Length

Ali-Boucetta, *et al.*, Angew. Chem. Int. Ed. 2013, 52, 2274 –2278, DOI: 10.1002/anie.201207664

18

Emerging Ecotoxicity Concerns

- Daphnids (*Daphnia magna*)
 - Interferes with food uptake & movement at low concentrations
 [MWCNTs & SWCNTs]; More toxic with longer exposures; Impaired growth and reproduction at very low levels
- Juvenile rainbow trout (Oncorhynchus mykiss)
 - Systemic toxicity at very low levels (consistent with GHS classification of "extremely toxic to aquatic life)
- Powerful anti-microbial agent
 - Implications for sewage treatment plants

Regulatory landscape: EPA

- 2008, CNTs considered a "new chemical" under TSCA Requires Pre-Manufacturing Notice (PMNs)
 - Consent orders: mandate tox testing (90-day inhalation studies) and specific industrial hygiene practices
 - Dozens of CNTs have been added to the TSCA inventory
- Subject of dozens of Significant New Use Rules (SNURs)
- 2015, Issued a proposed record-keeping and reporting rule (final rule expected in fall 2016)
 - Exempted: manufacturing/use for R&D purposes; small
 businesses/manufacturers (defined as less that 4 million in annual sales)

Regulatory landscape: Occupational

OSHA

No Permissible Exposure Limit for CNTs (no occupational standard for nanomaterials)

NIOSH

- 2013 "Current Intelligence Bulletin"
 - CNTs may pose a respiratory hazard for workers (pulmonary fibrosis & inflammation)
 - Recommended exposure limit = 1 ug/m³
 - based on technical feasibility, not safety
 - Doesn't reflect carcinogenicity data/evidence

Regulatory landscape: Europe

• REACH

- CNTs are considered different than graphite (bulk counter part)
- A few CNT registrations
- Major barrier: 1 metric ton (2,000 lb) threshold
- EU Member States Registries
 - France: 2012 decree, manf, import, or use 100 g of any nanomaterials
 - 65% of the nanomaterial declarations in the French registry (1st reporting year) below the REACH reporting threshold
 - Similar registries now in place in Belgium, Denmark Norway and under consideration in Sweden and Italy
- EU exposure limit 0.01 CNTs/cm³