## An Act to Protect Children, Families and Firefighters from Harmful Flame Retardants Proposed Additional CAS numbers/Isomers/Analogues of the 11 Flame Retardants Identified in the Law

<u>Mass Act to Protect Children, Families, and Firefighters from Harmful Flame Retardants</u> (Mass. Gen. Laws ch 21A, section 28 (2020), <u>Regulations</u> at 310 CMR 78.00) and <u>Background</u> <u>Document</u>

Note: Definitions requested by the Science Advisory Board (SAB) and Questions from the Department of Environmental Protection (DEP) for the SAB are provided in a companion document, "Definitions and Questions."

## The Flame Retardant Chemicals

The 11 chemicals prohibited in the law "or (their) chemical analogue":

- (i) Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) (CAS 13674–87–8)
- (ii) Tris(2-chloroethyl)phosphate (TCEP) (CAS 115–96–8)
- (iii) Antimony trioxide (CAS 1309-64-4)
- (iv) Hexabromocyclododecane (HBCD) (CAS 25637-99-4)
- (v) Bis(2-Ethylhexyl)-3,4,5,6- tetrabromophthalate (TBPH) (CAS 26040–51–7)
- (vi) 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) (CAS 183658-27-7)
- (vii) Chlorinated paraffins (CAS 85535–84–8)
- (viii) Tris (1-chloro-2-propyl) phosphate (TCPP) (CAS 13674-84-5)
- (ix) PentaBDE (CAS 32534-81-9)
- (x) OctaBDE (CAS 32536-52-0)
- (xi) Tetrabromobisphenol A (TBBPA) (CAS 79-94-7)

In 2019 the National Academies of Sciences (NAS) published their <u>report</u> on work to develop a class approach to assessing organohalogen flame retardants. The 11 chemicals in the law are members of 6 NAS subclasses (plus one additional "inorganic" subclass). Additional CAS numbers, positional isomers, diastereomers and analogues proposed are shown below for each of these 7 subclasses.

| Flame Retardants Regulated by MA<br>Session Law - Acts of 2020 Chapter<br>261 and potential Analogues                                                                                     | Chemical Structure                      | Difference from chemical<br>identified in the law                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| (i) Tris(1,3-dichloro-2-<br>propyl)phosphate*<br>(TDCPP)<br><u>13674–87–8</u><br>C <sub>9</sub> H <sub>15</sub> Cl <sub>6</sub> O <sub>4</sub> P                                          |                                         | Included in<br>MA 310 CMR 78.00                                                                                                 |
| Potential Analogue 1:<br>Tris(2,3-dibromopropyl)phosphate<br>(TDBPP) "Brominated tris" or<br>"Tris"<br><u>126-72-7</u><br>C <sub>9</sub> H <sub>15</sub> Br <sub>6</sub> O <sub>4</sub> P | Br O Br<br>Br O Br<br>Br O-P-O Br       | substitution of bromines for<br>chlorines                                                                                       |
| Potential Analogue 2:<br>Tris(tribromoneopentyl)<br>phosphate<br><u>19186-97-1</u><br>C <sub>15</sub> H <sub>24</sub> Br <sub>9</sub> O <sub>4</sub> P                                    |                                         | addition of methyl group to<br>each chain, substitution of<br>bromines for chlorines,<br>addition of 3 bromines                 |
| Potential Analogue 3:<br>Bis(2,3-dibromopropyl)phosphate<br>5412-25-9<br>C <sub>6</sub> H <sub>11</sub> Br <sub>4</sub> O <sub>4</sub> P                                                  | Br Br<br>Br<br>HO'O Br<br>HO'O          | substitution of bromines for<br>chlorines and one propyl<br>group hydrolyzed (hydrolysis<br>product of Potential<br>Analogue 1) |
| (ii)<br>Tris(2-chloroethyl)phosphate<br>(TCEP)<br><u>115–96–8</u><br>C <sub>6</sub> H <sub>12</sub> Cl <sub>3</sub> O <sub>4</sub> P                                                      | CI<br>O<br>O<br>O<br>O<br>O<br>CI<br>CI | Included in<br>MA 310 CMR 78.00                                                                                                 |
| Potential Analogue 1:<br>Bis(2-chloroethyl)2-<br>chloroethyphosphonate<br><u>6294-34-4</u><br>C <sub>6</sub> H <sub>12</sub> Cl <sub>3</sub> O <sub>3</sub> P                             |                                         | ethyl group bonded<br>directly to P<br>phosphonate, not phosphate                                                               |

# NAS Subclass 1: Polyhalogenated Organophosphates

| Potential Analogue 2:<br>"V6" 2,2-bis(chloromethyl)-<br>propane-1,3-diyltetrakis(2-<br>chloroethyl) bisphosphate<br>38051-10-4<br>$C_{13}H_{24}Cl_6O_8P_2$ | Two TCEP together               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| (viii)<br>Tris (1-chloro-2-propyl) phosphate**<br>(TCPP)<br><u>13674–84–5</u><br>C <sub>9</sub> H <sub>18</sub> Cl <sub>3</sub> O <sub>4</sub> P           | Included in<br>MA 310 CMR 78.00 |

Note: Positional isomer CAS numbers listed below may not be exhaustive.

\* Positional isomer of TDCPP: Tris(2,3-dichloropropyl)phosphate (78-43-3)

\*\*Positional isomers of TCPP: Tris(2-chloropropyl)phosphate (6145-73-9), Tris(3-chloropropyl)phosphate (26248-87-3 and 1067-98-7), Bis(2-chloropropyl)(2-chloro-1-methylethyl phosphate) (76649-15-5), Bis(2-chloro–1methylethyl)(2-chloropropyl)phosphate (76025-08-6), Bis(2-chloro-1-methylethyl)(3-chloro-1-propyl)phosphate (137909-40-1) not on PubChem, Bis(3-chloro-1-propyl)(2-chloro-1-methyl)phosphate (no CAS number)

| Flame Retardants Regulated by<br>MA Session Law - Acts of 2020<br>Chapter 261 and potential<br>Analogues                                              | Chemical Structure                                                              | Difference from chemical<br>identified in the law |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|
| (ix) Pentabromodiphenyl ether<br>(PentaBDE) <sup>1</sup><br><u>32534-81-9</u><br>C <sub>12</sub> H <sub>5</sub> Br <sub>5</sub> O                     | $Br \xrightarrow{Br} Br$ $Br \xrightarrow{Br} Br$ $Br$                          | Included in<br>MA 310 CMR 78.00                   |
| (x) Octabromodiphenyl ether<br>(OctaBDE) <sup>2</sup><br><u>32536-52-0</u><br>C <sub>12</sub> H <sub>2</sub> Br <sub>8</sub> O                        | Br Br Br<br>Br Br Br                                                            | Included in<br>MA 310 CMR 78.00                   |
| Potential Analogue 1:<br>Decabromodiphenyl ether<br>(DecaBDE, BDE-209)<br><u>1163-19-5</u><br>C <sub>12</sub> Br <sub>10</sub> O                      | Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>B | 10 bromine                                        |
| Potential Analogue 2:<br>Nonabromodiphenyl ether <sup>3</sup><br>(BDE-206)<br>63387-28-0<br>C <sub>12</sub> HBr <sub>9</sub> O                        | $Br \xrightarrow{Br} O \xrightarrow{Br} Br$                                     | 9 bromine                                         |
| Potential Analogue 3:<br>Heptabromodiphenyl ether <sup>4</sup><br>(BDE-183)<br><u>207122-16-5</u><br>C <sub>12</sub> H <sub>3</sub> Br <sub>7</sub> O | Br Br Br<br>Br Br Br                                                            | 7 bromine                                         |

# NAS Subclass 2: Polyhalogenated Diphenyl Ethers

| <u>Potential Analogue 4:</u><br>Hexabromodiphenyl ether <sup>5</sup><br><u>446255-03-4</u> - BDE-148;<br>C <sub>12</sub> H₄Br <sub>6</sub> O              | Br Br<br>Br Br<br>Br Br | 6 bromine |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|
| <u>Potential Analogue 5:</u><br>Tetrabromodiphenyl ether <sup>6</sup><br><u>5436-43-1</u> (BDE-47)<br>C <sub>12</sub> H <sub>6</sub> Br <sub>4</sub> O    | Br<br>Br<br>Br<br>Br    | 4 bromine |
| Potential Analogue 6:<br>Tribromodiphenyl ether <sup>7</sup><br><u>147217-78-5</u> ;<br>C <sub>12</sub> H <sub>7</sub> Br <sub>3</sub> O                  | Br<br>Br<br>Br          | 3 bromine |
| Potential Analogue 7:<br>Dibromodiphenyl ether <sup>8</sup><br>2050-47-7 (BDE-15)<br>C <sub>12</sub> H <sub>8</sub> Br <sub>2</sub> O                     | Br Br                   | 2 bromine |
| Potential Analogue 8:<br>Monobromodiphenyl ether<br>(4-bromodiphenyl ether) <sup>9</sup><br><u>101-55-3</u> (BDE-3)<br>C <sub>12</sub> H <sub>9</sub> BrO | ∕oBr                    | 1 bromine |

Note: Positional isomer CAS numbers listed below are not exhaustive.

<sup>1</sup> CAS Number 32534-81-9 refers to 2,2'4,4',5-pentabromodiphenyl ether. 60348-60-9 (BDE-99) is also 2,2',4,4',5-pentabromodiphenyl ether. Positional isomer of PentaBDE: 189084-64-8 (BDE-100)

<sup>2</sup> CAS Number 32536-52-0 refers to 2,2'3,3',4,4',5,5'-octabromodipheyl ether. Positional isomers of OctaBDE:

117964-21-3, 85446-17-9, 67797-09-5, 446255-56-7, 446255-42-1, 446255-38-5, 337513-72-1

<sup>3</sup> Positional isomers of NonaBDE: 437701-78-5 (BDE-208); 437701-79-6 (BDE-207)

<sup>4</sup> Positional isomers of HeptaBDE: 189084-67-1 (BDE-181)

<sup>5</sup> Positional isomers of HexaBDE: 68631-49-2 (BDE-153); 207122-15-4 (BDE-154); 1620837-37-7; 36483-60-0 <sup>6</sup> Positional isomers of TetraBDE: 5436-43-1; 446254-27-9 (BDE-55);189084-61-5 (BDE-66); 40088-47-9; Not produced independently but a major component of Penta-BDE

<sup>7</sup> Positional isomers of TriBDE: 41318-75-6; 49690-94-0; 147217-75-2 (BDE-28); 189084-60-4 (BDE-32); 147217-73-0 (BDE-19), (also 113152-37-7; 1620837-31-1 deprecated)

<sup>8</sup> Positional isomers of DiBDE: 53563-56-7 (BDE-5); 446254-14-4 (BDE-5); 51452-87-0 (BDE-4); 6903-63-5 (BDE-11), 189084-59-1 (BDE-12); 171977-44-9 (BDE-7); 147217-72-9 (BDE-6); 147217-71-8 (BDE-8); 337513-66-3 (BDE-9); 51930-04-2 (BDE-10); 83694-71-7 (BDE-13)

<sup>9</sup> Positional isomers of MonoBDE: 7025-06-1 (BDE-1); 36563-47-0 (BDE-1)

(This subclass can be defined as: "brominated diphenyl ethers, including all positional isomers, where the number of bromines is one to ten.")

| Flame Retardants Regulated<br>by MA Session Law - Acts of<br>2020 Chapter 261 and<br>potential Analogues                                    | Chemical Structure         | Difference from chemical<br>identified in the law |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|
| (iv)<br>Hexabromocyclododecane<br>(HBCD)*<br>$\frac{25637-99-4}{C_{12}H_{18}Br_6}$                                                          | Br<br>Br<br>Br<br>Br<br>Br | Included in<br>MA 310 CMR 78.00                   |
| Potential Analogue 1:<br>Hexabromocyclodecane**<br>25495-98-1<br>C <sub>10</sub> H <sub>14</sub> Br <sub>6</sub>                            | Br<br>Br<br>Br<br>Br Br Br | 2 fewer carbons on ring                           |
| Potential Analogue 2:<br>1,2,3,4,5-Pentabromo-6-<br>chlorocyclohexane<br><u>87-84-3</u><br>C <sub>6</sub> H <sub>6</sub> Br <sub>5</sub> Cl | Br<br>Br<br>Br<br>Br       | Smaller ring, substitution of<br>one halogen      |

#### NAS Subclass 3: Polyhalogenated Alicycles

Notes: \*CAS number 25637-99-4 refers to 1,3,5,7,9,11-hexabromocyclododecane. HBCD has 16 stereoisomers. More common isomers are: 3194–55–6 and 1093632-34-8, a mixture of three main diastereomers. Also 134237-50-6, 678970-15-5, 138257-19-9 (alpha); 134237-51-7, 678970-16-6, 138257-18-8 (beta); 134237-52-8, 678970-17-7, 169102-57-2 (gamma). \*\* CAS 25495-98-1 refers to 1,1,2,2,3,3-hexabromocyclodecane. CAS 10364-34-8 is 1,2,3,4,7,8-Hexabromocyclodecane, a positional isomer. Isomer CAS numbers listed are not exhaustive.

| Flame Retardants Regulated<br>by MA Session Law - Acts of<br>2020 Chapter 261 and<br>potential Analogues                                                                                                                                       | Chemical Structure                                                      | Difference from chemical<br>identified in the law                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
| (v)<br>Bis(2-Ethylhexyl)-3,4,5,6-<br>tetrabromophthalate<br>(TBPH)<br>26040-51-7<br>$C_{24}H_{34}Br_4O_4$                                                                                                                                      |                                                                         | Included in<br>MA 310 CMR 78.00                                       |
| Potential Analogue 1:<br>2-(2-<br>hydroxyethoxy)ethyl-2-<br>hyroxypropyl-3,4,5,6-<br>tetrabromo phthalate<br>20566-35-2<br>C <sub>15</sub> H <sub>16</sub> Br <sub>4</sub> O <sub>7</sub>                                                      | $Br \xrightarrow{Br} O \xrightarrow{OH} OH$                             | Shorter, unbranched chains,<br>additional O in chain,<br>hydroxylated |
| Potential Analogue 2:<br>2-(2-<br>hydroxyethoxy)ethyl-2-<br>hyroxypropyl-3,4,5,6-<br>tetrabromo phthalate<br>mixed esters with<br>diethylene and propylene<br>glycol<br><u>77098-07-8</u><br>C <sub>15</sub> H <sub>20</sub> Br₄O <sub>9</sub> | $B = \begin{pmatrix} H \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | Similar to Potential Analogue 1<br>but mixture                        |

### NAS Subclass 4: Polyhalogenated Phthalates/Benzoates/Imides



Note: Positional isomer of TBPH - Dioctyl 3,4,5,6-tetrabromobenzene-1,2-dicarboxylate (CAS 56720-20-8); many other isomers of TBPH and TBB exist and some have patents for FR use but none have CAS numbers. Isomer CAS number listed may not be exhaustive.



#### NAS Subclass 5: Polyhalogenated Bisphenol Aliphatics



Notes: CAS 79-94-7 refers to 3,3',5,5' TBBPA. Isomers of TBBPA: 4,4'-TBBPA (CAS 121839-52-9) and 2,2'-Isopropylidenebis[4,6-dibromophenol] (CAS 97890-15-8). Isomer CAS numbers listed may not be exhaustive.

#### NAS Subclass 6: Polyhalogenated Aliphatic Chains

| Flame Retardants Regulated<br>by MA Session Law - Acts of<br>2020 Chapter 261 | Chemical Structure | Status                       |
|-------------------------------------------------------------------------------|--------------------|------------------------------|
| (vii)<br>Chlorinated paraffins<br><u>85535–84–8</u>                           |                    | Included in MA 310 CMR 78.00 |

Notes: Listed under TURA as "Polychlorinated alkanes, c10-c13" without CAS numbers. Many paraffin groups with different CAS numbers and definitions exist. Those listed below seem to fit or overlap with CAS 85535-84-8. This list is not exhaustive.

| Chemical Name                                                                | CAS Number  | Additional Information, Sources                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alkanes C <sub>10-13</sub> , chloro<br>**CAS number listed in FR law         | 85535-84-8  | Used by Stockholm Convention for Persistent<br>Organic Pollutant (POP) designation; on<br>European Chemicals Agency (ECHA) Substances<br>of Very High Concern list 2008; DSL (Canadian<br>Domestic Substances List); WA Chem of High<br>Concern |
| Alkanes, c10-12, chloro (60%)                                                | 108171-26-2 | National Toxics Program (NTP) 1989 Report on<br>Carcinogens, reasonably anticipated to be<br>carcinogenic to humans; California Prop 65; MN<br>Chem of High Concern; NJ RtK carcinogen; WA<br>Chem of High Concern                              |
| Alkanes, C <sub>10-21</sub> , chloro                                         | 84082-38-2  | DSL; EU CAS registration; MN Chem of High<br>Concern                                                                                                                                                                                            |
| Alkanes, C <sub>6-18</sub> , chloro                                          | 68920-70-7  | DSL PBiT; EU carcinogen; MN Chem of High<br>Concern; ME; WA                                                                                                                                                                                     |
| Alkanes, chloro; chloroparaffins                                             | 61788-76-9  | DSL; C <sub>20 o</sub> n PubChem; MN Chem of High Concern;<br>OR High Priority Chem; WA Chem of High Concern to<br>Children                                                                                                                     |
| Paraffin waxes, chloro                                                       | 63449-39-8  | DSL PBiT; C10-C16 on CAS Registry; C <sub>24</sub> , FR use on PubChem; C <sub>22-30</sub> 70% CI on SDS; C <sub>18-28</sub> on ECHA; MN Chem of High Concern; OSPAR; WA Chem of High Concern to Children                                       |
| Alkanes, C <sub>14-17</sub> , chloro<br>2,4,6,10,12,14-hexachloropentadecane | 85535-85-9  | EU CAS registration; $C_{15}$ on PubChem; $C_{14-17}$ on ECHA; MN Chem of High Concern                                                                                                                                                          |

Sources: CPIA, Chlorinated Paraffins Industry Association, <u>http://www.regnet.com/cpia/status\_report.html</u>, PubChem, ECHA, TSCA, CAS.org.

| Flame Retardants Regulated<br>by MA Session Law - Acts of<br>2020 Chapter 261 and<br>potential Analogues | Chemical Structure                                      | Difference from chemical<br>identified in the law      |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| (iii) Antimony trioxide<br><u>1309–64–4</u><br>Sb <sub>2</sub> O <sub>3</sub>                            | 0 <sup>-Sb</sup> 0 <sup>-Sb</sup> 0                     | Included in MA 310 CMR 78.00                           |
| Potential Analogue 1:<br>Antimony pentoxide<br><u>1314-60-9</u><br>Sb <sub>2</sub> O <sub>5</sub>        | 0 0<br>■ ■<br>0 = <sup>Sb</sup> > 0 - <sup>Sb</sup> > 0 | Two additional oxygen;<br>Sb in the +5 oxidation state |
| Potential Analogue 2:<br>Sodium antimonate<br><u>33908-66-6</u><br>Na.O <sub>3</sub> Sb                  | Na <sup>+</sup><br>O<br>SbO                             | Sb in the +5 oxidation state                           |

### Subclass 7: Inorganic

Notes: Listed under TURA as "antimony compounds." Additional CAS numbers for antimony trioxide follow. List may not be exhaustive. 12412-52-1: Diantimony trioxide (Senarmontite) ChemIDPlus, not on TSCA, 0 suppliers on CAS; 1317-98-2: Diantimony trioxide (Mineral Valentinite), not on TSCA, 0 suppliers on CAS; 1327-33-9: Diantimony trioxide (Senarmontite) ECHA.