Emerging Safer Alternatives for Chromate Conversion Coatings and Primers

Prof. Bill Fahrenholtz and Prof. Matt O’Keefe
Missouri University of Science and Technology
billf@mst.edu
Acknowledgement

• The support and guidance of Bruce Sartwell of the Strategic Environmental Research and Development Program (SERDP) under SERDP Project WP-1618, Contract W912HQ-08-C-0008

• Prof. Jim Stoffer, Prof. Tom O’Keefe, and Dr. Paul Yu for their innovation and guidance over the past 20 years

• Rich Albers and Eric Morris of PPG Aerospace (formerly Deft)

• All of the students/post-docs, especially: Dr. Will Pinc, Dr. Simon Joshi, Dr. Daimon Heller, Dr. Surender Maddela and Dr. Becky Treu

Research goal: Reduce technical risk of implementing chromate alternatives on military aircraft by investigating corrosion protection mechanisms
Problem

- Corrosion and oxidation cost the U.S. DOD ~$20B annually
 - Maintenance cost is about $100,000 per aircraft per year
 - Protective coatings based on chromates
Background

• Chromates are effective corrosion inhibitors
 – Low cost, highly protective
 – Can overcome processing issues
 – Robust protection mechanism
• Many different potential replacements
 – More than 90% by weight of chromate is in the primer
 – Conversion coatings provide corrosion protection and adhesion
 – Primers provide long-term corrosion protection

Deft non-chromate primer on an Apache helicopter fuselage
Rare-Earth Corrosion Inhibitors

- RE compounds are potential replacements for chromates
 - Environmentally friendly corrosion inhibitors
- RE phases are \textbf{NOT} inherently protective
 - Protection depends on phase of RE compound, type of coating, and pH of the environment
 - Both Ce/Pr and mixed oxidation state (i.e. Ce$^{3+/4+}$ Pr$^{3+/4+}$) compounds are of interest
Outline

• Conversion coatings
 – Promising alternatives
 – Cerium-based conversion coatings
 • Deposition methods
 • Characterization and testing
 • Corrosion protection mechanisms
• Primers
 – Promising alternatives
 – Pr-based inhibitor package
 • Phase stability
 • Formulation and evaluation of model primers
 • Proposed corrosion protection mechanism
Chromate Alternatives

• Trivalent chromium passivation (TCP)
 – Developed and patented by U.S. Navy (NAVAIR)
 – U.S. Patents 6,375,726; 6,511,532; 6,521,029; 6,527,841; 6,663,700; 6,669,764
 – Commercial product (e.g., METALAST TCP-HF, Alodine T-5900)
• Fluorozirconate coatings
 – Replacement for phosphating processes
 – Commercial product (e.g., PPG Zircobond)
• Oxy-anion analogues to chromates
 – Molybdates and vanadates
• Sol-gel coatings, anodizing, and others

None is a drop-in replacement for CrCCs on all alloys
Ce-Based Conversion Coatings

• Originally investigated by Hinton
 – 1000 ppm CeCl$_3$ in water, deposition time 100’s of hours
 – Coating deposited selectively on intermetallics, cathodic inhibitor

• Subsequent research by many groups including Missouri S&T
 – Oxidizing additive reduces deposition time to minutes
 – Immersion, spray and electrolytic methods

Coating Deposition

Al 2024-T3 panel
Alcohol wipe

Alkaline Degreasing
5 min at 55°C

Acid Activation
1 wt% H₂SO₄
5 min at 50°C

Water Rinsing
after each step

Coated Panels

5 Sprays with
35 sec delay

Post-Treatment
5 min at 85°C
phosphate sol’n

Best coatings ~400 nm thick, 336 hours protection
is ASTM B117 salt spray

• Coating solution: 0.11 M CeCl₃•H₂O, 1 M H₂O₂, 2.4 g/L gelatin,
pH to 2.3 w/ HCl
• Post-treatment (sealing) solution: 2.5 wt%
NaH₂PO₄
Cerium Solubility

- As-deposited CeCCs consist of hydrated cerium oxide species
- Ce oxides are more soluble at low pH
 - Ce(OH)$_4$ is the most soluble
 - CeO$_2$ is the least soluble
- Post-treated CeCCs contain hydrated cerium phosphate species
 - Ce phosphates less soluble than oxides
 - Increasing phosphate concentration decreases Ce solubility
- Dissolution of Ce species during corrosion seems unlikely

Corrosion Science 60 290-295 (2012)
Formation of Altered Layer

- Interfacial layer formation and structural changes demonstrate CeCCs are not static barriers, but actively inhibit corrosion.
- Chloride ions attacked at crack/substrate interfaces:
 - Al^{3+} ions released from altered layer may react with metastable Ce species.
 - Transition of cerium hydrogen phosphate species to CePO$_4\cdot$H$_2$O may affect pH.
 - Facilitate formation of more stable phase(s).

Salt Spray Changes Impedance

Changes in post-treated CeCCs during salt spray

- Impedance doubles during first 24 hrs
- Al, O rich layer develops, no visible corrosion

CeCC Protection Summary

- CeCCs offer corrosion protection to high strength aluminum alloys
 - Ce species are not soluble
 - An altered layer forms between CeCCs and substrates during salt spray exposure
 - Impedance initially increases during salt spray exposure

- Overview of protection mechanisms
 1. CeCCs are an insoluble barrier between the environment and the substrate
 2. During corrosion, a layer containing Ce, Al, and O forms between the coating and substrate
 3. Protective oxides deposit on the coating surface and in defects during salt spray exposure
Corrosion Protecting Primers

- Primers are protective coatings
 - Promotes paint adhesion
 - Provides corrosion protection
 - ~50 µm thick (2 mils)

- Chromate primers
 - Typically epoxy-polyamide based
 - Strontium chromate or similar inhibitors
 - Protects by dissolution of chromates from primer, transport to site of attack, and reaction to passivate corrosion

Chromate primer on CrCC after 3000 hours in ASTM B117 salt spray testing
Chromate Alternatives

- Mg-rich primer
 - Licensed and marketed by Azko-Nobel (Aerodur)
 - Protection exceeds chromates in some tests, not sufficient in others
- Electrocoat primers
 - Widely used in automotive (e.g., body in white initiatives)
 - Tank based process for multiple metals
- Multi-functional UV-curable coating (SERDP WP-1519)
Primer with Pr-Based Inhibitors

- Pr-based inhibitors have been developed for primer coatings
- Panels with model primers were prepared by Deft (now PPG Aerospace)
- Inhibitor species were incorporated within the resin/polymer matrix
 - Pr_2O_3
 - Pr_6O_{11}
 - Talc as a control (should be inert)
Salt Spray Exposure

- Scribed Al 2024-T3 panels with CrCCs and model primers were evaluated in ASTM B117 salt spray testing for up to 3000 hours
- Coatings were characterized before, during, and after salt spray exposure
 - XRD to identify crystalline phases
 - SEM-EDS to characterize morphology and chemical composition
- Goal was to identify species dissolving, transporting, and reacting

\[
\text{Pr}_2\text{O}_3 \quad \text{Pr}_6\text{O}_{11} \quad \text{Talc}
\]

\text{Pr}_2\text{O}_3 \text{ and Pr}_6\text{O}_{11} \text{ primers provided corrosion protection, talc primer did not}
Transport of Pr Species

Scribe following 3000 Hours of Spray Exposure

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>67.46</td>
</tr>
<tr>
<td>Fe</td>
<td>3.75</td>
</tr>
<tr>
<td>Cu</td>
<td>1.87</td>
</tr>
<tr>
<td>Al</td>
<td>15.11</td>
</tr>
<tr>
<td>Pr</td>
<td>11.81</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

EDS identified the major elements present as O, Al, and Pr
Proposed Protection Mechanism

- Model for primer protection has been developed
- Pr-rich species dissolve from primer matrix containing Pr(OH)$_3$
- Dissolved species precipitate as Pr-hydroxycarbonates
 - Coating surface and in the scribed area
Overall Summary

• Chromate alternatives are available for aerospace applications

• Cerium-based conversion coatings
 – Deposited by immersion, spray, or electrolytic processes
 – Corrosion protection for up to 336 hours in ASTM B117 salt spray
 – Protects through barrier and interfacial reaction mechanisms

• Pr-based inhibitors for primers
 – Incorporated into current epoxy-polyamide primer bases
 – Corrosion protection up to 3000 hours in ASTM B117 salt spray
 – Protects by dissolution, transport, and reaction

• Rare-earth coatings are promising alternatives to chromates