4 Questions
(On Platers' Minds)

By: Frank Altmayer, CEF, President, Scientific Control Labs, Inc. Technical Director, AESF

Questions:
1. What is the current status of zinc alloys as cadmium replacements?
2. What is the status of hexavalent chromium replacements?
3. Is nickel plating in trouble?
4. What role is nanotechnology playing in electroplating?

Galvanic Series (V)

<table>
<thead>
<tr>
<th>E° (SO₄²⁻)</th>
<th>Galvanic Series, E (Cl⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg -2.37</td>
<td>Mg -2.37</td>
</tr>
<tr>
<td>Al -1.66</td>
<td>Al -1.66</td>
</tr>
<tr>
<td>Zn -0.76</td>
<td>Zn -0.76</td>
</tr>
<tr>
<td>Fe -0.44</td>
<td>Cd -0.54</td>
</tr>
<tr>
<td>Cd -0.40</td>
<td>Fe -0.44</td>
</tr>
<tr>
<td>Co -0.29</td>
<td>Co -0.29</td>
</tr>
<tr>
<td>Ni 0.00</td>
<td>Ni 0.00</td>
</tr>
<tr>
<td>Sn 0.14</td>
<td>Sn 0.14</td>
</tr>
<tr>
<td>H 0.00</td>
<td>H 0.00</td>
</tr>
<tr>
<td>Cu +0.34</td>
<td>Cu +0.34</td>
</tr>
<tr>
<td>Au +1.68</td>
<td>Au +1.68</td>
</tr>
</tbody>
</table>

Zinc-Nickel

- 5-15% Ni
- Excellent salt spray performance
- Alkaline or acidic solutions
- Good Kesternich performance
 - Zinc-cobalt is better
- Chromate performance enhanced by heating
- Favorable galvanic couple with aluminum
- Good formability & weldability

Zinc-Cobalt Processes

- Alloy = 0.2-0.6% cobalt.
- Deposit is bright/level
- Chromating solutions will require modification
- Rack or barrel plated
- Lower cost
- Co is not regulated (yet)
- No high-temperature-resistant chromates
Tin-Zinc Alloy Plating

- Alloy is 25-30% Zinc
- Cyanide or Acidic Solutions Available
- High Corrosion resistance (especially in sulfur atmosphere)
- Excellent solderability
- Good frictional properties
- Excellent ductility
- Soft (subject to damage)
- Dull, matte finish
- Excellent couple with Al

Fatigue Resistance Comparison

<table>
<thead>
<tr>
<th>Coating</th>
<th>Avg. FLC* (0.1 s r)</th>
<th>Avg. FLC* (0.43 s r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unplated</td>
<td>242,456</td>
<td>40,452</td>
</tr>
<tr>
<td>Cadmium¹</td>
<td>760.038</td>
<td>40,452</td>
</tr>
<tr>
<td>Cadmium²</td>
<td>730,733</td>
<td>-run out-</td>
</tr>
<tr>
<td>Zinc-Nickel²</td>
<td>39,819</td>
<td>39,819</td>
</tr>
<tr>
<td>Zinc-Nickel³</td>
<td>9,941</td>
<td>11,911</td>
</tr>
<tr>
<td>Zinc-Nickel⁴</td>
<td>run-out</td>
<td>42,311</td>
</tr>
<tr>
<td>Zinc-Tin⁵</td>
<td>7,620</td>
<td>no data</td>
</tr>
<tr>
<td>Zinc-Cobalt⁶</td>
<td>7,620</td>
<td>no data</td>
</tr>
<tr>
<td>Zinc-Cobalt⁷</td>
<td>22,921</td>
<td>no data</td>
</tr>
</tbody>
</table>

*Fatigue Life Cycle
**stress ratio
¹: cadmium, ²: zinc nitrate, ³: zinc chloride, ⁴: cadmium, ⁵: zinc-tin, ⁶: zinc-cobalt

HSC Comparison

<table>
<thead>
<tr>
<th>Coating</th>
<th>#-Tests</th>
<th>Time (hrs.) To Failure/Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2</td>
<td>(2) >200, (2-Pass)</td>
</tr>
<tr>
<td>Cadmium¹</td>
<td>6</td>
<td>(1) 183 (Fail), (5) >200, (5-Pass)</td>
</tr>
<tr>
<td>Cadmium²</td>
<td>3</td>
<td>(3) 213, 213, 213 (3-Pass)</td>
</tr>
<tr>
<td>Zinc-Nickel²</td>
<td>3</td>
<td>(3) 0.5, 0.4, 0.5 (3-Fail)</td>
</tr>
<tr>
<td>Zinc-Nickel³</td>
<td>3</td>
<td>(3) 240, 240, 240 (3-Pass)</td>
</tr>
<tr>
<td>Zinc-Nickel⁴</td>
<td>6</td>
<td>(1) 141 (Fail), (5) >200 (5-Pass)</td>
</tr>
<tr>
<td>Zinc-Tin⁵</td>
<td>3</td>
<td>(3) 0, 0, 0.2 (3-Fail)</td>
</tr>
<tr>
<td>Zinc-Cobalt³</td>
<td>3</td>
<td>(3) 0.8, 5.7, 4.4 (3-Fail)</td>
</tr>
<tr>
<td>Zinc-Cobalt⁷</td>
<td>3</td>
<td>(3) 4.5, 4.5, 8.3 (3-Fail)</td>
</tr>
</tbody>
</table>

* Alternate Solution Supplier
1: chromated, 2: not chromated 3: acid solution 4: alkaline solution

Adhesion of Cadmium Substitutes

To Plastically Deformed Steel Substrate

<table>
<thead>
<tr>
<th>Coating</th>
<th>Average Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1</td>
</tr>
<tr>
<td>Epoxy E-Coat</td>
<td>2</td>
</tr>
<tr>
<td>Electroless Nickel</td>
<td>3</td>
</tr>
<tr>
<td>Emulsion</td>
<td>5</td>
</tr>
<tr>
<td>Inorganic Zinc</td>
<td>6</td>
</tr>
<tr>
<td>IVD Aluminum</td>
<td>7</td>
</tr>
<tr>
<td>VD All-Topcoat</td>
<td>8</td>
</tr>
<tr>
<td>Metal-Ceramic</td>
<td>9</td>
</tr>
<tr>
<td>Titanium Nitride</td>
<td>10</td>
</tr>
<tr>
<td>Zinc (alk.)</td>
<td>11</td>
</tr>
<tr>
<td>Zinc (ch.)</td>
<td>12</td>
</tr>
<tr>
<td>Zinc-Nickel</td>
<td>13</td>
</tr>
</tbody>
</table>

Worst

<table>
<thead>
<tr>
<th>Coating</th>
<th>Average Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1</td>
</tr>
<tr>
<td>Epoxy E-Coat</td>
<td>2</td>
</tr>
<tr>
<td>Electroless Nickel</td>
<td>3</td>
</tr>
<tr>
<td>Emulsion</td>
<td>5</td>
</tr>
<tr>
<td>Inorganic Zinc</td>
<td>6</td>
</tr>
<tr>
<td>IVD Aluminum</td>
<td>7</td>
</tr>
<tr>
<td>VD All-Topcoat</td>
<td>8</td>
</tr>
<tr>
<td>Metal-Ceramic</td>
<td>9</td>
</tr>
<tr>
<td>Titanium Nitride</td>
<td>10</td>
</tr>
<tr>
<td>Zinc (alk.)</td>
<td>11</td>
</tr>
<tr>
<td>Zinc (ch.)</td>
<td>12</td>
</tr>
<tr>
<td>Zinc-Nickel</td>
<td>13</td>
</tr>
</tbody>
</table>

Breaking Torque of Cadmium Substitutes

After 12 months in Marine Atmosphere
Questions:
1. What is the current status of zinc alloys as cadmium replacements?
2. What is the current status of hexavalent chromate replacements?
3. Is nickel plating in trouble?
4. What role is nanotechnology playing in electroplating?

Background History & Issue
- The European Parliament & the Council of European Union signed the End-of-Life vehicle (ELV) directive on 9/18/00
- Directive 2000/53/EC, Annex II, limits Hexavalent Chromium to 2.0 grams per vehicle for corrosion protection purpose only; 0.0 gram for any other application in a motor vehicle
- Implementation (Cr^{+6}) - January 2003, now delayed to July, 2007
- The Directive covers 4 heavy metals: Hexavalent Chromium, Lead, Mercury, and Cadmium

Details of ELV Directive 2000/53/EC (from European Union)
- Objective is the prevention of waste from vehicles and also the reuse, recycle, & recovery of end-of life vehicles & components
- Vintage & historic vehicles are exempted
- Components, materials, as well as spare & replacement parts are also covered
- Automotive component manufacturers to provide appropriate information to treatment facilities, concerning dismantling, & reuse

- Re-use & recovery @ 85% minimum by 1/1/2006 for all ELVs (presently 70%)
- Re-use & recovery increased to 95% by 1/1/2015
- The OEMs must publish information to prospective buyers & in their literature
- Member States already have all laws, regulations & administrative provisions to comply with the Directive

Why is this so important?
- OEMs may not accept any components with Cr^{+6} after 07/2007 (for 2003MY)
- Currently an average vehicle = 4 to 8 grams of Cr^{+6} (some > 10g)
- NOT an Option; MUST comply to meet customer’s requirements & stay in business

Cost Factor
- Estimated cost increase in NA 10%-30%?
- Several Reasons –
 - Raw material cost - 10% to 30% higher
 - Concentration of Cr^{+6} @ 10-12% Vs 2-4%
 - Heated bath Vs ambient, Shorter bath life
- Initial study indicating cost factor @ 1.0-1.7
- Volume, selection of coating, as well as supplier’s capability could be some of the major determining factors for higher cost
Technical Issues

- Chromium exists in four valence states:
 - Cr°
 - Cr⁺³
 - Cr⁺⁶
- Trivalent and Hexavalent Chromium:
 - corrosion protection coatings and application
 - process intermediates
 - sometimes changing states (Cr⁺³ to Cr⁺⁶) during the application process
 - Hexavalent is self healing, trivalent is not
- Neither Cr⁺³ nor Cr⁺⁶ are legislated in the European Union Directive at present

Where Is It?

- Hexavalent Chromium is found in the corrosion preventive and conversion coatings on numerous key steel and aluminum automotive components (usually as chromate films)
- Metal parts (such as fasteners, levers, fuel/brake lines, alloy wheels, etc.)
- Polymer pigments
- Pre-painting and anodizing sealing chromate rinse
- Phosphates (acidulated rinse)

Test Methods for Cr⁺⁶

~9 test methods available, DELPHI Procedure

Summary:
- 50 cm² minimum sample
- Chromated parts must be >24hrs. and <30 days old
- 5-7 minutes extraction in boiling water
- Remove part(s), filter water if cloudy
- Acidify with sulfuric acid
- Add diphenylcarbazide solution
- Measure color at 540nm
- Repeat extraction to confirm all Cr⁺⁶ removed

Choice of Alternatives

- Two Major Alternatives –
 - Trivalent Chromate
 - Commercially available globally, many suppliers offer proven technology
 - Enhanced corrosion protection with a sealer or a topcoat; several color finishes
 - Black may be hard to produce
 - Chrome-Free Substitutes
 - Limited universal availability
 - Application limited to spray or spin & spray in most cases (Geomet, Plus Sealers)
 - Mostly silver or gray (black finish limited)
 - Cost may be higher than Cr⁺³

Questions:

1. What is the current status of zinc alloys as cadmium replacements?
2. What is the current status of hexavalent chromium replacements?
3. Is nickel plating in trouble?
4. What role is nanotechnology playing in electroplating?

Is Nickel Plating In Trouble?

- Sweden/Denmark Lead Ban On Nickel In Jewelry
 - <0.05% Ni in any jewelry alloy
- Denmark/Germany
 - <0.5 g/cm²/week release to artificial perspiration
- EEC793/93 Existing Substances Regulation
 - Data Collection (completed)
 - Priority Setting (completed)
 - Risk Assessment (completed)
 - Risk Reduction (draft completed, not released)
Is Nickel Plating In Trouble?

- California, IARC & NTP have linked some nickel compounds to cancer
- TERA (Toxicology Excellence for Risk Assessment) Finds "insufficient data"

Substitutes:
- Cu-Zn-Sn (Trade Name: Alballoy)
 - 55-60% Cu, 20-30% Sn, 10-20% Zn
 - Bright
 - Solderable
 - Hardness > nickel
 - Solution is hard to control
 - Cyanide process

Questions:
1. What is the current status of zinc alloys as cadmium replacements?
2. What is the current status of hexavalent chromate replacements?
3. Is nickel plating in trouble?
4. What role is nanotechnology playing in electroplating?

Nano-technology & Electroplating MEMS® Nickel Plating

MEM:
Nano-scale components produced by combination of lithography and electroplating

Applications:
- Pressure Transducers
- Medical monitors
- Airbag sensors
- Bio-terror sensors
- Miniature power supplies
- Heat exchangers
- Aircraft components

Market: $5b+

European Regulations Affected
- Directive 76/769/EEC Restrictions on marketing/use of dangerous substances
- Directive 91/689/EEC water policy
- Directive 98/65/EC groundwater protection
- Directive 80/68/EEC aquatic environments
- Directive 96/61/EC pollution prevention & control
- Directive 76/464/EEC aquatic environments
- Directive 2000/59/EC water policy
- Directive 89/106/EC construction products
- Directive 98/24/EC protection of workers
- Directive 2000/76/EC incineration of waste
- Directive 91/689/EEC No. 259/93 hazardous waste

Micro-electrodeposition

Electrochemical System, Inc.
Provides electroplating system for R&D purpose in MEMS field. Also provides electroplating service such as special bath, plating, etc.
Contact:
Igor Kadiya or Xiaoyi Gu
240 King Blvd. Newark, NJ
07102
Tel: (973)242-8988, (201)670-8397
Fax: (201)670-0620, (201)997-7213
E-mail: ecaik@worldnet.att.net or xygu8888@aol.com
Structures of micro-miniature dimensions are formed by scanning a nearly parallel beam of high energy light ions across the surface of a resist material such as PMMA in a predetermined pattern. The resulting chemical changes in the exposed resist material allows a chemical developer to remove the exposed material while leaving the unexposed material substantially unaffected. By simultaneously scanning the beam and orienting the resist layer in a controlled manner, resist structures of three dimensional complexity can be micro-machined.

MEMS Process Details

A conductive plating base or seed layer over silicon (sputtered nickel) and a means to pattern the electro-deposit (photolithography) are needed.

Adhesion Promotion:
Application of sputtered Ti or Cr, or roughening of Si

Typically, the electrodeposit is patterned by an additive process (selective deposition) instead of a subtractive process (etching):

Solution: Nickel Sulfate, 200 g/L, Nickel Chloride 5 g/L, Boric Acid 25 g/L, Saccharin 3 g/L, pH 4, 23°C, 0.735mA/cm², 50% duty (pulse)

MEMS Features (According to JPL):

- 10 to 1,000 times reduction in size, weight, and power consumption over conventional technology
- Matched or better performance
- New function and capability not realizable with traditional technology
- Significant improvement in operation endurance (shock, vibration, and temperature cycling)

The End

Thank You!