Hansen Solubility Parameters: Introduction and Applications

Assoc. Prof. Daniel F. Schmidt

Department of Plastics Engineering

Solubility

How do we understand solubility?

"Like dissolves like"

Polar vs. non-polar solvents

- Typically refers to the degree of charge separation in the solvent molecule
- The greater the strength and / or separation of charges, the more polar the solvent

Quantifying Behavior

- If we want to be quantitative, there are several approaches; two examples:
 - Kauri-butanol (Kb) value (ASTM D1133)
 - Indicates maximum amount of compound that can be added to solution of kauri resin (resin from the kauri tree of New Zealand) in butanol without causing cloudiness
 - Octanol-water partition coefficient (K_{ow} or log P) (ASTM E1147)
 - High values indicate compound prefers octanol phase (less polar)
 - Low values indicate compound prefers water phase (more polar)

Quantifying Behavior

- Can also make a thermodynamic argument for example, based on the removal of a single molecule from a material
 - Must overcome all intermolecular interactions ("stickiness") between molecule and its neighbors to do this
 - This occurs during vaporization, <u>and also</u> during dissolution
 - Prof. Joel Henry Hildebrand (UC Berkeley Chemistry) proposed this treatment
 - Hildebrand solubility parameter defined as the square root of the aforementioned quantity (the cohesive energy density)

Hildebrand Solubility Parameter

δ+

What contributes to molecular "stickiness"?

- Dispersion Forces
 - All atoms are surrounding by electron "clouds"
 - The electron cloud is, <u>on average</u>, evenly distributed around the atom
 - At a given instant, however, the electron distribution may be lopsided
 - This temporary polarization results in attractive interactions with nearby atoms

 $\delta +$

Figures from http://wps.prenhall.com/wps/media/objects/946/968975/ch10_02.htm

 $\delta -$

δ-

 $\delta +$

What contributes to molecular "stickiness"?

- Polar interactions
 - Some atoms have a greater affinity for electrons than others (more electronegative)
 - Bonds between atoms of differing electronegativities are polarized as a result
 - Dipoles thus formed attract one another
 - Same idea as with dispersion forces, but dipoles are permanent, not temporary

δ+

δ

What contributes to molecular "stickiness"?

Hydrogen bonding

- Hydrogen has just one electron, so when electron density is pulled away from hydrogen (i.e. by an electronegative atom), the nucleus is exposed
- This results in exceptionally strong polar interactions with other atoms possessing extra lone pairs of electrons
- As with previous cases, the interaction is electrostatic in nature (opposites attract)

Shortcomings of a single parameter approach

- The Hildebrand solubility parameter can be useful, but it does not account for the origins of molecular "stickiness" (or their consequences)
 - This means it is possible for various combinations of intermolecular interactions to give rise to the same Hildebrand solubility parameter
 - EXAMPLE: nitroethane and 1-butanol have the same Hildebrand solubility parameter (~23 MPa^{1/2}); neither will dissolve epoxy resin alone, but a blend of the two <u>will</u>
- Hildebrand recognized this, and tried to address it by further classifying compounds according to hydrogen bonding ability (weak, moderate, strong), but this approach has limited utility

Accounting for interactions: Hansen Solubility Parameters

- Hansen solubility parameters address this issue by specifying separate quantities for each of the three aforementioned intermolecular forces:
 - δ_d Dispersion parameter
 - δ_p Polar parameter
 - δ_h Hydrogen-bonding parameter
- Can still define total solubility parameter
 (δ_{total}² = δ_d² + δ_p² + δ_h²), but can separate
 cohesive energy density by interaction type

Thinking about Hansen Solubility Parameters (HSPs)

- HSPs mean we can represent each compound as a point in 3D "solubility space"
- Distance between HSP points in solubility space is defined as follows:

$$R_{a}^{2} = 4(\delta_{d1} - \delta_{d2})^{2} + (\delta_{p1} - \delta_{p2})^{2} + (\delta_{h1} - \delta_{h2})^{2}$$

- With some work, it is also possible to define an interaction radius (R₀) and a reduced energy difference (RED = R_a/R₀)
 - RED > 1 \rightarrow Incompatible, RED < 1 \rightarrow Compatible

Thinking about Hansen Solubility Parameters (HSPs)

- In some cases, HSP values are intuitive
 - Hydrocarbons are dominated by δ_d
 - Water is dominated by δ_h
 - Similar compounds will have similar HSPs (for example, *n*-butanol will be similar to *n*-propanol)
- HSPs can be correlated with other properties
 - Strong correlation between refractive index and δ_d
 - Strong correlation between dipole moment and δ_p
 - Strong correlation between surface energy and a mix of parameters plus molar volume
- Not perfect
 - Molecular size and shape are not captured
 - Some interaction types are ignored (ion-dipole for example)
- Nevertheless, "good enough" to give reasonable predictions

Defining HSPs: Group Contributions

- Break molecule into functional groups
- Add up the δ_d, δ_p, and δ_h contributions from each group to generate estimate
- Van Krevelen, Hoy, Beerbower
 - Based on a restricted range of functional groups
 - Different starting values so different end results
- Stefanis-Panayiotou more modern
- All require manual group assignment

Hansen Solubility Parameters in Practice (HSPiP)

- Software package developed by Hansen, Abbott and Yamamoto
- Able to provide HSPs for arbitrary molecules
 - Has a large look-up table for materials whose HSPs are known
 - Utilizes "Yamamoto Molecular Breaking" (Y-MB) model for other compounds
 - Carefully chosen / optimized set of functional groups
 - Sanity checking vs. other data sources (refractive index, dipole moment, surface tension, heat of vaporization)
 - Tested against "over-fitting"
 - Best estimate of HSPs available at the moment
 - HSPiP also automates aforementioned manual methods

Hansen Solubility Parameters in Practice (HSPiP)

- As HSPs are related to heat of vaporization, HSPiP can:
 - Estimate boiling point
 - Estimate vapor pressure
 - Estimate Antoine coefficients

 Melting point predictions are made independently using an external model based on an extensive validated melting point database

The Classic HSP Measurement Technique

- The key to HSP's practical success
- Widely applicable
 - Crystalline solids
 - Polymers
 - Nanoparticles
 - DNA
- Take 20 test tubes, find if the stuff is "happy" in 20 different, representative, known solvents
 - Set of solvents should neither be "all bad" or "all good"
 - Best to cover a decent range of HSP values with solvents
- Plot the solubility sphere in 3D HSP solubility space
 - Can define center of sphere (i.e. HSPs for "stuff")
 - Can define radius of sphere (i.e. interaction radius R₀)

High Throughput Options

- Assembling even 20 solvents can be a big barrier to HSP measurement
- Small labs /companies/universities may not want to do this
- Big companies have robots
 - All large HSPiP users have automated HSP determination systems
 - Some better than others
 - Some automate solubility measurements
 - Agfa-Gaevert, Belgium offering this as a service
 - Also VLCI in the Netherlands

High Throughput Example: VLCI

Chemspeed **FORMAX unit** enables automated highthroughput testing

Grid Technique

- Use 4 pairs of solvents
- Create a "grid" spanning the relevant solubility space
- Developed at U. Erlangen for organic photovoltaics
- Much easier with robotics
- Great for targeted measurements

Contents lists available at SciVerse ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance

Florian Machui^{a,*}, Stefan Langner^a, Xiangdong Zhu^a, Steven Abbott^b, Christoph J. Brabec^{a,c}

^a I-MEET (Institute Materials for Electronics and Energy Technology) University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany

- ^b 7 Elsmere Road, Ipswich, Suffolk IP1 3SZ, United Kingdom
- ^c Bavarian Center for Applied Energy Research (ZAE Bayern), Am Weichselgarten 7, 91058 Erlangen, Germany

Fig. 4. HSP diagrams of PCBM: a) different solvents method and b) binary solvent gradient method with solubility limit 5 mg mL⁻¹.

Notes on Polymer Solubility

An important asymmetry

- A polymer can be rather insoluble in a solvent
- The same solvent can be quite soluble in the polymer

This relates to the entropy of mixing

- Much more to be gained (entropically) dissolving small molecules than polymers
- Likewise, semi-crystalline polymers resist dissolution all the more (greater "stickiness" between molecules in crystalline domains)
 - For example, polyethylene and polypropylene dissolve in hydrocarbons (as predicted by HSP values) – but only at elevated temperatures

HSPiP Refinements: Molar Volume Correction (MVC)

PolyLacticAcid

D	ouble-Click Radius 📄 ESC Alert	"Inside"
	4.0 Limit MVC GA	1 •
	Possible δD bad fit	
	In= 20 Out= 7 Total= 27	
'	D= 19.19 P=10.14 H=6.22	=
	Tot = 22.58	=
	R= 11.1	
ו	Fit= 1.000	
	Core= ±[0.15, 0.35, 0.80]	
В		*

Classic fit – size of solvent not included

	PolyLacticAcid		
D	ouble-Click Radius 📃 ESC Alert	"Inside"	
	4.0 Limit V MVC GA	1 •	,
	In= 20 Out= 7 Total= 27	~	
	D= 18.41 P=9.06 H=6.39		l
	Tot = 21.49		l
	R= 9.9	=	l
	Fit= 1.000		l
D.	Core= ±[0.20, 0.35, 0.70]		J
J	Wrong In= 0		
R		-	

MVC fit – small solvents "penalized", large solvents "accommodated"

HSPiP Refinements: Solvent Range Check (SRC)

Identifies solvents at the edge of the apparent solubility sphere

These improve fits the most with the least effort

HSPiP Refinements: Hydrogen Bond Donors and Acceptors

- Divide δ_h into hydrogen bond donor and acceptor components
- Allows for specific interactions that might increase solubility, such as C=O acting as acceptor and –OH as donor
- Careful analysis shows it's important
 - So far not a great success for normal fits
 - Continuing development work

HSPiP 3rd Edition 3.1.25 Temperature Temperature °C Thermal 70 Default expansion coefficient expansion 0.0010 reduces Quick Calculator -cohesive δD δP δH 16.3 6.7 5.5 At T°C energy density

- HSP values decrease as a result
- Accounted for by indicating CTE

HSPiP Refinements:

HSPiP Refinements: Fitting Solubility Data

Special Topics: HSPs and Surfactants

- They don't mix
- You can estimate or measure the HSP of a surfactant molecule – it's just an ordinary molecule
- Solubility parameter models in general (not just HSPs) assume that the same parameters apply everywhere ("mean field")
 - Cannot deal with situations where interactions are with specific parts of a molecule, molecules orient, etc.
 - This can be a problem when dealing with nanoparticles as well, i.e. if they possess multiple types of surfaces (modified or not, ends vs. sides, edges vs. faces, etc.)

Special Topics: Stain Removal

- No issues when using HSP to guide solvent selection for stain removal
 - Important to keep in mind however that diffusion in is faster than diffusion out
 - That's why our plastic microwave dishes become stained over time
- With surfactants, other models needed
 - Ex. Hydophilic-Lipophilic Difference Net Average Curvature (HLD-NAC) model

Specific Topics: Solvent Blends

- A perfect HSP match with a perfect solvent (from the standpoint of cost, safety, vapor pressure, odor, regulatory approvals, etc.) is very rare (few new solvents)
- Can create blends to address this issue
- An X:Y mix of two solvents leads to an X:Y average of their HSPs (where X and Y are in vol%)
- You can even create a perfect solvent from a mix of two non-solvents
 - This was the proof of the power of HSP 40 years ago
 - Impossible to do with Hildebrand
- HSPiP can propose both binary and ternary blends, estimate and optimize evaporation rates

Special Topics: Example of Rational Green Substitution

- FAME (Fatty Acid Methyl Esters) are not particularly good solvents, but are "green" [16.4, 2.6, 4.5]
- Glycerol carbonate comes from bioglycerol, CO₂ (in principle) and is biodegradable – but is much too polar to be highly useful [17.9, 25.5, 17.4]
- A 60:40 mix is an impressive match for a great (but unusable) solvent like dimethyl acetamide (DMAc)

Special Topics: HSPs and Biological Systems

- Proteins, DNA bases exist in high HSP space (DNA bases → [19, 8, 8])
 - Chemicals that interact with and / or disrupt these biomacromolecules should have similar HSPs
 - Useful for identifying potentially cytotoxic and / or therapeutic agents
- Skin permeation is predicted in a much more nuanced manner than log K_{ow} method
 - DMSO is a good HSP match for skin; doesn't destroy it, permeates through it
 - Terpenes indicated as permeation enhancers, but this depends on what they're mixed with; 50:50 ethanol / terpenes gives HSP match with skin as well
 - Alternatively, stay away from [17,8,8] if you want to avoid skin permeation

Special Topics: Glove Selection

- If there's interest in choosing the right gloves for a chemical, make sure there's a big HSP mismatch between chemical and glove
 - Rather obvious, but confirmed by large studies
 - A rational way to choose gloves for handling cytotoxic chemicals
 - Also good for handling any new chemicals with unknown properties more generally

Special Topics: Aromas/Fragrances

- Many aroma and fragrance HSPs are known
- Unknowns are often simple molecules, enabling accurate HSP predictions
- Flavor scalping, migration etc. explained using partition coefficients (from HSPs) and diffusion theory (depends on molecular size, shape)

Conclusions

- HSPs represent a useful middle ground when treating solubility
 - Not just empirical correlations (thermodynamic basis)
 - Detailed enough to approximate reality much of the time
 - General enough to apply to a range of materials
 - Highly polar / charged species represent one exception
 - Amphiphilic species (i.e. where different interactions are localized to different parts of the molecule) represent a second exception
 - Determined relatively easily (depending on definition)
- Once HSPs are known, there are many, many applications
 - Finding a solvent for a new polymer or chemical
 - Replacing a bad solvent with greener options
 - Looking to cause or prevent skin permeation
 - Identifying appropriate personal protective equipment (PPE)
 - Controlling flavor scalping, migration, etc.

Acknowledgements

- The HSPiP Team:
 - Prof. Steven Abbott
 - http://www.stevenabbott.co.uk/
 - Dr. Charles Hansen
 - http://hansen-solubility.com/
 - Dr. Hiroshi Yamamoto
 - http://www.pirika.com/

THANK YOU FOR YOUR ATTENTION!