Solubility

How do we understand solubility?

“Like dissolves like”

Polar vs. non-polar solvents

- Typically refers to the degree of charge separation in the solvent molecule
- The greater the strength and/or separation of charges, the more polar the solvent
Quantifying Behavior

- If we want to be quantitative, there are several approaches; two examples:
 - **Kauri-butanol (Kb) value (ASTM D1133)**
 - Indicates maximum amount of compound that can be added to solution of kauri resin (resin from the kauri tree of New Zealand) in butanol without causing cloudiness
 - **Octanol-water partition coefficient (K_{ow} or log P) (ASTM E1147)**
 - High values indicate compound prefers octanol phase (less polar)
 - Low values indicate compound prefers water phase (more polar)
Quantifying Behavior

- Can also make a thermodynamic argument - for example, based on the removal of a single molecule from a material
 - Must overcome all intermolecular interactions ("stickiness") between molecule and its neighbors to do this
 - This occurs during vaporization, and also during dissolution
 - Prof. Joel Henry Hildebrand (UC Berkeley Chemistry) proposed this treatment
 - Hildebrand solubility parameter defined as the square root of the aforementioned quantity (the cohesive energy density)
Hildebrand Solubility Parameter

\[\delta = \sqrt{CED} = \sqrt{\frac{\Delta H_v - RT}{V_m}} \]

- Hildebrand solubility parameter [typical units are \((\text{cal/cm}^3)^{1/2}\) or \(\text{MPa}^{1/2}\)]
- Heat of vaporization of compound (energy/mol)
- Thermal energy available at a given temperature (energy/mol)
- Cohesive energy density of compound (“molecular stickiness”, energy/volume)
- Molar volume of compound (volume/mole)

Hardest thing to find is the heat of vaporization of a compound (think about plastics!)
What contributes to molecular “stickiness”?

- **Dispersion Forces**
 - All atoms are surrounding by electron “clouds”
 - The electron cloud is, **on average**, evenly distributed around the atom
 - At a given instant, however, the electron distribution may be lopsided
 - This temporary polarization results in attractive interactions with nearby atoms

Figures from http://wps.prenhall.com/wps/media/objects/946/968975/ch10_02.htm
What contributes to molecular “stickiness”?

- **Polar interactions**
 - Some atoms have a greater affinity for electrons than others (more electronegative)
 - Bonds between atoms of differing electronegativities are polarized as a result
 - Dipoles thus formed attract one another
 - Same idea as with dispersion forces, but dipoles are permanent, not temporary
What contributes to molecular “stickiness”?

- Hydrogen bonding
 - Hydrogen has just one electron, so when electron density is pulled away from hydrogen (i.e. by an electronegative atom), the nucleus is exposed.
 - This results in exceptionally strong polar interactions with other atoms possessing extra lone pairs of electrons.
 - As with previous cases, the interaction is electrostatic in nature (opposites attract).

Figure from http://wps.prenhall.com/wps/media/objects/946/968975/ch10_02.htm
Shortcomings of a single parameter approach

- The Hildebrand solubility parameter can be useful, but it does not account for the origins of molecular “stickiness” (or their consequences)
 - This means it is possible for various combinations of intermolecular interactions to give rise to the same Hildebrand solubility parameter
 - **EXAMPLE:** nitroethane and 1-butanol have the same Hildebrand solubility parameter (~23 MPa^{1/2}); neither will dissolve epoxy resin alone, but a blend of the two will
- Hildebrand recognized this, and tried to address it by further classifying compounds according to hydrogen bonding ability (weak, moderate, strong), but this approach has limited utility
Accounting for interactions: Hansen Solubility Parameters

- Hansen solubility parameters address this issue by specifying separate quantities for each of the three aforementioned intermolecular forces:
 - δ_d – Dispersion parameter
 - δ_p – Polar parameter
 - δ_h – Hydrogen-bonding parameter

- Can still define total solubility parameter ($\delta_{\text{total}}^2 = \delta_d^2 + \delta_p^2 + \delta_h^2$), but can separate cohesive energy density by interaction type
Thinking about Hansen Solubility Parameters (HSPs)

- HSPs mean we can represent each compound as a point in 3D “solubility space”
- Distance between HSP points in solubility space is defined as follows:

\[R_a^2 = 4(\delta_{d1} - \delta_{d2})^2 + (\delta_{p1} - \delta_{p2})^2 + (\delta_{h1} - \delta_{h2})^2 \]

- With some work, it is also possible to define an interaction radius \((R_0)\) and a reduced energy difference \((RED = R_a / R_0)\)
 - \(RED > 1 \rightarrow\) Incompatible, \(RED < 1 \rightarrow\) Compatible
Thinking about Hansen Solubility Parameters (HSPs)

- In some cases, HSP values are intuitive
 - Hydrocarbons are dominated by δ_d
 - Water is dominated by δ_h
 - Similar compounds will have similar HSPs (for example, n-butanol will be similar to n-propanol)

- HSPs can be correlated with other properties
 - Strong correlation between refractive index and δ_d
 - Strong correlation between dipole moment and δ_p
 - Strong correlation between surface energy and a mix of parameters plus molar volume

- Not perfect
 - Molecular size and shape are not captured
 - Some interaction types are ignored (ion-dipole for example)

- Nevertheless, “good enough” to give reasonable predictions
Defining HSPs: Group Contributions

- Break molecule into functional groups
- Add up the δ_d, δ_p, and δ_h contributions from each group to generate estimate
- Van Krevelen, Hoy, Beerbower
 - Based on a restricted range of functional groups
 - Different starting values so different end results
- Stefanis-Panayiotou – more modern
- All require manual group assignment
Hansen Solubility Parameters in Practice (HSPiP)

- Software package developed by Hansen, Abbott and Yamamoto
- Able to provide HSPs for arbitrary molecules
 - Has a large look-up table for materials whose HSPs are known
 - Utilizes “Yamamoto Molecular Breaking” (Y-MB) model for other compounds
 - Carefully chosen / optimized set of functional groups
 - Sanity checking vs. other data sources (refractive index, dipole moment, surface tension, heat of vaporization)
 - Tested against “over-fitting”
- Best estimate of HSPs available at the moment
- HSPiP also automates aforementioned manual methods
Hansen Solubility Parameters in Practice (HSPiP)

- As HSPs are related to heat of vaporization, HSPiP can:
 - Estimate boiling point
 - Estimate vapor pressure
 - Estimate Antoine coefficients

- Melting point predictions are made independently using an external model based on an extensive validated melting point database
The Classic HSP Measurement Technique

- The key to HSP’s practical success
- Widely applicable
 - Crystalline solids
 - Polymers
 - Nanoparticles
 - DNA
- Take 20 test tubes, find if the stuff is “happy” in 20 different, representative, known solvents
 - Set of solvents should neither be “all bad” or “all good”
 - Best to cover a decent range of HSP values with solvents
- Plot the solubility sphere in 3D HSP solubility space
 - Can define center of sphere (i.e. HSPs for “stuff”)
 - Can define radius of sphere (i.e. interaction radius R_0)
High Throughput Options

- Assembling even 20 solvents can be a big barrier to HSP measurement
- Small labs/companies/universities may not want to do this
- Big companies have robots
 - All large HSPiP users have automated HSP determination systems
 - Some better than others
 - Some automate solubility measurements
 - Agfa-Gaevert, Belgium offering this as a service
 - Also VLCI in the Netherlands
High Throughput Example: VLCI

- Chemspeed FORMAX unit enables automated high-throughput testing
Grid Technique

- Use 4 pairs of solvents
- Create a “grid” spanning the relevant solubility space
- Developed at U. Erlangen for organic photovoltaics
- Much easier with robotics
- Great for targeted measurements
Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance

Florian Machui, Stefan Langner, Xiangdong Zhu, Steven Abbott, Christoph J. Brabec

1 MEET (Institute Materials for Electronics and Energy Technology) University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
2 7 Elmore Road, Ipswich, Suffolk IP1 3SZ, United Kingdom
3 Bavarian Center for Applied Energy Research (ZAE Bayern), Am Weichselgarten 7, 91058 Erlangen, Germany

Fig. 4. HSP diagrams of PCBM: a) different solvents method and b) binary solvent gradient method with solubility limit 5 mg mL⁻¹.
Notes on Polymer Solubility

- **An important asymmetry**
 - A polymer can be rather insoluble in a solvent
 - The same solvent can be quite soluble in the polymer

- **This relates to the entropy of mixing**
 - Much more to be gained (entropically) dissolving small molecules than polymers
 - Likewise, semi-crystalline polymers resist dissolution all the more (greater “stickiness” between molecules in crystalline domains)
 - For example, polyethylene and polypropylene dissolve in hydrocarbons (as predicted by HSP values) — but only at elevated temperatures
HSPiP Refinements: Molar Volume Correction (MVC)

Classic fit - size of solvent not included

MVC fit - small solvents “penalized”, large solvents “accommodated”
HSPiP Refinements: Solvent Range Check (SRC)

- **Identifies solvents at the edge of the apparent solubility sphere**
- **These improve fits the most with the least effort**

<table>
<thead>
<tr>
<th>No.</th>
<th>Solvent</th>
<th>δD</th>
<th>δP</th>
<th>δH</th>
<th>Score</th>
<th>RED</th>
<th>NVol</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>Cyclohexane</td>
<td>16.8</td>
<td>0</td>
<td>0</td>
<td>1.144</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>Isopropyl Ether</td>
<td>15.1</td>
<td>3.2</td>
<td>3.2</td>
<td>1.001</td>
<td>141.8</td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>Hexane</td>
<td>14.9</td>
<td>0</td>
<td>0</td>
<td>1.319</td>
<td>131.4</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>Ethanol</td>
<td>15.8</td>
<td>8.8</td>
<td>19.4</td>
<td>1.340</td>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>Methanol</td>
<td>14.7</td>
<td>12.3</td>
<td>22.3</td>
<td>1.670</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>696</td>
<td>Water</td>
<td>15.5</td>
<td>16</td>
<td>42.3</td>
<td>3.360</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Acetic Acid</td>
<td>14.5</td>
<td>8</td>
<td>13.9</td>
<td>1.08</td>
<td>57.6</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Carbon Dioxide (0 Dipole Moment)</td>
<td>20.2</td>
<td>0</td>
<td>0.6</td>
<td>1.06</td>
<td>60.6</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>Dipropyl Ameine</td>
<td>15.3</td>
<td>1.4</td>
<td>4.1</td>
<td>1.07</td>
<td>136.9</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>2-Ethyl-Hexanol</td>
<td>15.9</td>
<td>3.3</td>
<td>11.8</td>
<td>0.99</td>
<td>166.9</td>
<td></td>
</tr>
<tr>
<td>376</td>
<td>Ethylene Glycol Monosulfate Ether</td>
<td>15.9</td>
<td>7.2</td>
<td>14</td>
<td>0.95</td>
<td>97.5</td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>Formic Acid</td>
<td>14.6</td>
<td>10</td>
<td>14</td>
<td>1.08</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>Isocamyl Acetate</td>
<td>15.3</td>
<td>3.1</td>
<td>7</td>
<td>0.94</td>
<td>150.2</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>Methyl isobutyl Carbinol</td>
<td>15.4</td>
<td>3.3</td>
<td>12.3</td>
<td>1.07</td>
<td>127.2</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>Methyl (Dimethoxy Methane)</td>
<td>15</td>
<td>1.8</td>
<td>8.6</td>
<td>1.08</td>
<td>89.1</td>
<td></td>
</tr>
</tbody>
</table>

Figure:

- 3D scatter plot showing solvents with their respective δD, δP, δH values.
- Each point represents a solvent, with color intensity indicating the score.
- Highlighted points indicate solvents identified by the SRC.

Table:

- Table shows solvents with their solubility parameters (δD, δP, δH) and corresponding scores.
- Parameters such as RED and NVol are also included.

Graphs:

- 2D scatter plots for δP vs δD, δH vs δD, and δP vs δH, showing the distribution of solvents.
- Colors and markers signify different criteria or fits improved by the SRC.
HSPiP Refinements: Hydrogen Bond Donors and Acceptors

- Divide δ_h into hydrogen bond donor and acceptor components
- Allows for specific interactions that might increase solubility, such as C=O acting as acceptor and –OH as donor
- Careful analysis shows it’s important
 - So far not a great success for normal fits
 - Continuing development work
HSPiP Refinements: Accounting for Temperature

- Thermal expansion reduces cohesive energy density
- HSP values decrease as a result
- Accounted for by indicating CTE
HSPiP Refinements: Fitting Solubility Data
Special Topics: HSPs and Surfactants

- They don’t mix
- You *can* estimate or measure the HSP of a surfactant molecule – it’s just an ordinary molecule
- Solubility parameter models in general (not just HSPs) assume that the same parameters apply everywhere ("mean field")
 - Cannot deal with situations where interactions are with specific parts of a molecule, molecules orient, etc.
 - This can be a problem when dealing with nanoparticles as well, i.e. if they possess multiple types of surfaces (modified or not, ends vs. sides, edges vs. faces, etc.)
Special Topics: Stain Removal

- No issues when using HSP to guide solvent selection for stain removal
 - Important to keep in mind however that diffusion in is faster than diffusion out
 - That’s why our plastic microwave dishes become stained over time
- With surfactants, other models needed
 - Ex. Hydophilic-Lipophilic Difference - Net Average Curvature (HLD-NAC) model
Specific Topics: Solvent Blends

- A perfect HSP match with a perfect solvent (from the standpoint of cost, safety, vapor pressure, odor, regulatory approvals, etc.) is very rare (few new solvents)
- Can create blends to address this issue
- An X:Y mix of two solvents leads to an X:Y average of their HSPs (where X and Y are in vol%)
- You can even create a perfect solvent from a mix of two non-solvents
 - This was the proof of the power of HSP 40 years ago
 - Impossible to do with Hildebrand
- HSPiP can propose both binary and ternary blends, estimate and optimize evaporation rates
Special Topics: Example of Rational Green Substitution

- **FAME (Fatty Acid Methyl Esters)** are not particularly good solvents, but are “green” [16.4, 2.6, 4.5]

- Glycerol carbonate comes from bio-glycerol, CO$_2$ (in principle) and is bio-degradable – but is much too polar to be highly useful [17.9, 25.5, 17.4]

- A 60:40 mix is an impressive match for a great (but unusable) solvent like dimethyl acetamide (DMAc)
Special Topics: HSPs and Biological Systems

- Proteins, DNA bases exist in high HSP space (DNA bases $\rightarrow [19, 8, 8]$)
 - Chemicals that interact with and/or disrupt these biomacromolecules should have similar HSPs
 - Useful for identifying potentially cytotoxic and/or therapeutic agents

- Skin permeation is predicted in a much more nuanced manner than log K_{OW} method
 - DMSO is a good HSP match for skin; doesn’t destroy it, permeates through it
 - Terpenes indicated as permeation enhancers, but this depends on what they’re mixed with; 50:50 ethanol/terpenes gives HSP match with skin as well
 - Alternatively, stay away from $[17,8,8]$ if you want to avoid skin permeation
Special Topics: Glove Selection

- If there’s interest in choosing the right gloves for a chemical, make sure there’s a big HSP mismatch between chemical and glove
 - Rather obvious, but confirmed by large studies
 - A rational way to choose gloves for handling cytotoxic chemicals
 - Also good for handling any new chemicals with unknown properties more generally
Special Topics: Aromas/Fragrances

- Many aroma and fragrance HSPs are known
- Unknowns are often simple molecules, enabling accurate HSP predictions
- Flavor scalping, migration etc. explained using partition coefficients (from HSPs) and diffusion theory (depends on molecular size, shape)

![Graph showing the relationship between loss of aroma chemical and HSP Distance from polymer. The equation is $y = -0.1059x + 1.3685$ with $R^2 = 0.7352$.]

y = -0.1059**x** + 1.3685
R² = 0.7352
Conclusions

- **HSPs** represent a useful middle ground when treating solubility
 - Not just empirical correlations (thermodynamic basis)
 - Detailed enough to approximate reality much of the time
 - General enough to apply to a range of materials
 - Highly polar / charged species represent one exception
 - Amphiphilic species (i.e. where different interactions are localized to different parts of the molecule) represent a second exception
 - Determined relatively easily (depending on definition)
- Once HSPs are known, there are many, many applications
 - Finding a solvent for a new polymer or chemical
 - Replacing a bad solvent with greener options
 - Looking to cause or prevent skin permeation
 - Identifying appropriate personal protective equipment (PPE)
 - Controlling flavor scalping, migration, etc.
Acknowledgements

The HSPiP Team:

- Prof. Steven Abbott
 - http://www.stevenabbott.co.uk/
- Dr. Charles Hansen
 - http://hansen-solubility.com/
- Dr. Hiroshi Yamamoto
 - http://www.pirika.com/

THANK YOU FOR YOUR ATTENTION!