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A B S T R A C T   

In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using 
advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of 
chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity 
assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive 
data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be 
used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview 
of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implica
tions for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were 
derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism 
identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally, 
the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were 
discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical priori
tization and regulatory applications without the use of laboratory animals.   

1. Introduction 

Under stringent chemical regulation regimes, toxicity information is 
required for many chemicals. New approach methodologies (NAMs) 
have been developed to efficiently and rapidly screen for the potential 
toxicity of chemicals. NAMs are a broad concept that includes in silico, in 
chemico, and in vitro, and aim to improve the understanding of the 
hazards of chemicals using new tools, including high-throughput 
screening (HTS) (ECHA, 2016). The data produced through NAMs can 
provide information on the mode of action of chemicals, allowing 
mechanism-based predictions of in vivo toxicity (Shukla et al., 2010). 
NAMs can also be used for toxicity screening or prioritizing chemicals in 
the regulatory context (Kavlock et al., 2018). For example, in Canada, a 
case study was conducted using various NAMs for regulatory purposes in 
prioritization and risk assessment of substituted phenols under the 
Chemicals Management Plan, and in vitro HTS data from the Toxicity 
Forecaster (ToxCast) and Tox21 programs were used to set priorities 
(OECD, 2018). 

ToxCast was launched by the US Environmental Protection Agency 
(EPA) in 2007 to produce toxicity data on a large number of chemicals 
using high-throughput in vitro assays to develop improved toxicity pre
diction models (Richard et al., 2016). The EPA has analyzed and pub
lished biological data from hundreds of assays for thousands of 
environmental chemicals screened by the ToxCast and Tox21 collabo
ration using a standardized data analysis pipeline (Filer et al., 2017; 
Richard et al., 2021). Therefore, this database is particularly suitable 
and useful for research that identifies the mechanisms of toxicity of 
environmental chemicals and the development of adverse outcome 
pathways (AOPs). The AOP is a framework that can maximize the reg
ulatory use of NAMs, integrate existing knowledge, and provide scien
tific evidence for mechanism-based toxicity assessments (Delrue et al., 
2016; Perkins et al., 2015; Wittwehr et al., 2017). 

This study analyzed ToxCast/Tox21 data and reviewed recent 
studies using ToxCast/Tox21 to aid mechanism-based chemical priori
tization and toxicity prediction. Through data analysis, information on 
toxicity mechanism targets, the assay-specific activity of chemicals, and 
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gene scores for chemical priorities were summarized. Through a litera
ture review, the mechanisms and assays that could be utilized for 
toxicity prediction were suggested. Finally, the potential application and 
limitations of using of ToxCast/Tox21 assay data for chemical risk 
assessment were proposed. 

2. Overview of ToxCast/Tox21 assays 

The EPA’s ToxCast program released version 3.2 data (INVI
TRODB_V3_2) in July 2019 (the data can be downloaded from htt 
ps://www.epa.gov/chemical-research/exploring-toxcast-data-dow 
nloadable-data). The data include chemical information, bioassay in
formation, and summary information about the model and generated 
data through its own analytical pipeline (Filer et al., 2017). AC50 or 
hitcall data are mainly used in the utilization of ToxCast, but informa
tion on the assay should be considered for the mechanism-based toxicity 
evaluation and classification of chemicals. The assay summary file 
provides various types of information for each assay, such as assay ID, 
assay source, used organism or cell model, assay component, detection 
technology, target information, citation information, and reagent 
information. 

There were 13 assay sources (Table 1, the full list of assays in 
INVITRODB_V3_2 is provided in Table S1). As the assay platform, such 
as the species used and the exposure time is different for different assay 
sources, it is necessary to check which assay platform is used for each 
assay. Among the assay sources, NovaScreen (NVS) provided the most 
(441) assays but tested the fewest chemicals on average. NVS mainly 
measures binding and enzymatic activity, and uses not only human 
tissue, but also various experimental animal model-based platforms such 
as rat, mouse, guinea pig, sheep, rabbit, bovine, pig, and chimpanzee. 
Although the assay summary provides a variety of information, the use 
of ToxCast data for mechanism-based toxicity assessment and classifi
cation requires certain consideration of the target information and 
cytotoxicity. ToxCast provides target information, such as the targets of 
technological measurement and biologically intended targets. The 
technological target represents the specific target of each assay readout 
and is assigned solely based on the technological parameters. In 
contrast, the intended target represents the biological intention of the 

assay and considers the signal direction relative to the controls (US EPA, 
2014). Therefore, the intended target information should be used for 
mechanism-based toxicity evaluation. In INVITRODB_V3_2, 949 assays 
had the intended target information, and 105 assays were associated 
with cytotoxicity (Fig. 1). 

2.1. Assays with intended target 

The intended targets belonged to 23 intended target families and 
nine intended target types (Table 2; the description of the intended 
target family and the number of assays by assay source are provided in 
Table S2). Nuclear receptors are the most common target family (192), 
followed by G protein-coupled receptors (GPCRs) (129), and kinases 
(122). Nuclear receptors play a role in mediating the activity of lipo
philic substances, such as xenobiotics, endogenous hormones, and 
certain vitamins (US EPA, 2014) and attagene (ATG) provides 115 as
says. GPCRs play a role in integrating extracellular signals such as 
hormones, growth factors, and neurotransmitters, into downstream re
sponses (US EPA, 2014), and NVS provides 76 assays. As NVS provided 
most of the assays, it had assays corresponding to 14 of the 23 intended 
target families. Based on the intended target type, there are many assays 
in the order of protein, pathway, RNA, and molecular messenger. Among 
the protein types, there were 264 enzymes, 230 transcription factors, 
and 190 receptors. These target families include well-known toxic tar
gets associated with genotoxicity, developmental biology, cell signal 
transduction pathways, and xenobiotic metabolism. As the under
standing of toxic pathways increases, the use of ToxCast assays is ex
pected to increase (Kavlock et al., 2012). 

2.2. Assays for cytotoxicity 

In the assay summary file, assays with “burst_assay” of “1”, “cell_
viability” of “1”, or “intended target subfamily” of “cytotoxicity” were 
selected as cytotoxicity-related assays. A total of 105 cytotoxicity- 
related assays were included in the ToxCast INVITRODB_V3_2 assay 
data (Table 3, The full list of cytotoxicity-related assays is provided in 
Table S3). Based on the assay source, the cytotoxicity assay provided by 
Tox21 was the highest (77), followed by BSK (13). By criteria, assays 

Table 1 
Summary of assays by assay source in ToxCast INVITRODB_V3_2.  

Assay 
Source 

No. of 
assays 

Model Format 
(well 
plate) 

Time 
point (h) 

Readout (function) Readout (detection) Average no. of 
chemicals 

ACEA 6 T47D, 22Rv1 384 80 Viability, signaling Label Free Technology 2234 
APR 160 HepG2, hepatocyte 384 1, 24, 48, 

72 
Viability, signaling Fluorescence 398 

ATG 265 HepG2 24 24 Reporter gene, background 
control, viability 

Fluorescence 2375 

BSK 174 Various cell lines 96 24 Background control, viability, 
signaling 

Spectrophotometry, Fluorescence, 
Microscopy 

1484 

CEETOX 46 H295R 96 48 Detection of steroid hormone, 
viability 

Spectrophotometry, Fluorescence 344 

CLD 48 Hepatocyte 96 6, 24, 48 Reporter gene, background 
control 

Luminescence 309 

NCCT 5 HEK293T 384 0.5, 24 Viability, binding Luminescence, Fluorescence, 
Spectrophotometry 

424 

NHEERL 8 J1 embryonic stem cells, 
HEK293T, zebrafish 
embryo 

96 2, 3, 144, 
192 

Viability, signaling, enzymatic 
activity, viability, binding, 
developmental defect 

Fluorescence, Spectrophotometry, 
Luminescence, Radioactivity, 
Microscopy 

346 

NVS 441 Various tissues 48, 96, 384 0.33–72 Binding, enzymatic activity Spectrophotometry, Fluorescence, 
Radiometry 

109 

OT 17 HEK293T, CHO-K1, HeLa 384 2, 8, 16, 
24 

Reporter gene, binding Luminescence, Fluorescence, 
Microscopy 

1858 

TANGUAY 19 Dechorionated zebrafish 
embryo 

96 120 Developmental defect Microscopy 1060 

TOX21 280 Various cell lines 1536 0.5–48 Background control, reporter 
gene, signaling, viability 

Luminescence, Fluorescence 6692 

UPITT 4 NA 384 NA NA NA 1962  
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corresponding to “cell_viability” of “1” were 104 out of 105, except for 
the ‘CEETOX_H295R_MTT_cell_viability_up’ assay. This assay was 
analyzed in the positive fitting direction (looking to detect an increase in 
viability) relative to DMSO as the negative control and baseline of 
activity. 

A study analyzing the ToxCast dataset by Judson et al. (2016) re
ported that cytotoxicity was observed in the tested concentration range 
for approximately half of the chemicals tested. Therefore, a significant 
proportion of the measured activities may be due to the assay interfer
ence process caused by cytotoxicity (cytotoxicity-associated “burst”). 
Therefore, cytotoxicity assays should be considered when using ToxCast 
data for toxicity mechanism research, as it is necessary to confirm 

whether assay activity is associated with specific biomolecular in
teractions (true positives) or false positives confounded by cytotoxicity. 
Z-scores have been proposed to allow for the alignment of cytotoxicity 
regions across chemicals, independent of specific AC50s (Judson et al., 
2016). A high Z-score (> 3) indicated that the activity occurred at 
concentrations below the cytotoxic region. 

When the Z-score was applied to the cytotoxicity assay, many 
chemicals showed activity at a Z-score of three or higher (Table 3). This 
may be because it is difficult to consider the concentration range of 
cytotoxicity for all chemicals and assays when calculating the Z-score. 
Therefore, when checking the activity of chemicals specific to an assay, 
it is necessary to check whether the Z-score is three or higher as well as 

Fig. 1. ToxCast/Tox21 assay overview by endpoint category based on intended target family in INVITRODB_V3_2.  

Table 2 
Number of assays by intended target family and intended target type from ToxCast INVITRODB_V3_2.  

Intended target type 
Intended 
target family 

Molecular messenger Pathway Protein RNA Total 

Enzyme Protein-specified Receptor Transcription factor Transporter NA mRNA  

Cell adhesion molecules – – – 32 – – – – – 32 
cyp – – 61 – – – – – 18 79 
Cytokine – – – 82 – – – – – 82 
Deiodinase – – 1 – – – – – – 1 
dna binding – 19 – – 1 69 – – – 89 
Esterase – – 12 – – – – – – 12 
gpcr – 1 – 6 78 44 – – – 129 
Growth factor – – – 4 – 2 – – – 6 
Histones – 1 – – – – – – – 1 
Hydrolase – 1 11 – – – – – – 12 
Ion channel – – – – 20 – – – – 20 
kinase – – 86 – 36 – – – – 122 
Lyase – – 2 – 1 – – – 3 6 
Methyltransferase – – 2 – – – – – – 2 
Misc protein – – 1 2 1 – – – – 4 
Nuclear receptor – 25 – – 51 115 – 1 – 192 
Oxidoreductase – – 18 – 2 – – – – 20 
Phosphatase – – 39 – – – – – – 39 
protease – – 30 12 – – – – – 42 
Protease inhibitor – – – 4 – – – – – 4 
Steroid hormone 22 – – – – – – – – 22 
Transferase – – – – – – – – 9 9 
Transporter – – 1 – – – 11 – 12 24 
Total 22 47 264 142 190 230 11 1 42 949  
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the distribution of the cytotoxic concentration range of the assay of in
terest. Nevertheless, a high Z-score means that the chemical activity is 
more likely to be true positive (not associated with cytotoxicity) than a 
low Z-score, thus adding confidence to the assay-specific activity. 

3. Overview of chemical-gene combinations in ToxCast/Tox21 
data 

The gene score was calculated based on potency (AC50) and speci
ficity (Z-score) and can be used to set the priority of chemicals (Auer
bach et al., 2016; Baker et al., 2020; Janesick et al., 2016; Leung et al., 
2016). In this study, the gene score was calculated by removing chem
icals with a cytotoxic Z-score of <3 and then integrating the Z-score with 
a negative log-molar transformed AC50 value [− log (AC50) + Z-score]. 
Chemical-gene combinations with a gene score of seven or higher were 
the most interesting, meaning that the Z-score was greater than three 
and the AC50 was <100 μM, because this was the widely tested con
centration in most of the assays (Kleinstreuer et al., 2017). 

The overall number of chemical-gene combinations of the 949 assays 
with the intended target information is summarized (Fig. 2). 1,796,348 
chemical-gene combinations were tested (20.6% of a total of 8,739,341 
combinations), and among them, 125,427 chemical-gene combinations 
were active (7.0% of tested combinations). This indicates that the data 
imbalance between active and inactive ToxCast/Tox21 is severe. The 
true positive chemical-gene combinations with Z-scores greater than 
three were 38,706 (30.9% of active combinations), and 12,669 combi
nations had gene scores greater than seven (32.7% of true positive 
combinations). A total of 698 genes (73.6%, out of 949) and 3346 
chemicals (36.3%, out of 9209) were included. 

In the analysis of the chemical-gene combination with the highest 

gene score, among the top 10 combinations, the estrogen receptor gene 
was the most common with five genes, followed by the androgen re
ceptor and the p53 gene with two genes each (Table 4). The top-ranked 
chemical-gene combination was hydroxylamine sulfate (2:1)-TP53 with 
a gene score of 48.02, the second-ranked combination was 
hexabromobenzene-H2AFX with a gene score of 46.23, followed by the 
atracurium besylate-ESR1 combination with a gene score of 44.22. 
Because cytotoxicity may occur even when the Z-score is three or higher 
(Table 3), the higher the Z-score, the higher is the specificity of the ac
tivity. However, since the Z-score ranges from 3 to 41.81 and -log 
(AC50) ranges from − 4.65 to 6.21, the specificity (Z-score) is considered 
more than the potential (AC50) in the gene score, which is simply the 
addition of the Z-score and -log (AC50). Therefore, attention should be 
paid to setting chemical priorities using gene scores, depending on the 
study purpose. 

4. Recent studies using ToxCast/Tox21 assay data 

The ToxCast/Tox21 dataset has been used in many studies on the 
toxicity mechanism of chemicals as a high-quality data generated 
through a consistent statistical process that includes the effects of 
thousands of chemicals on various protein targets (Auerbach et al., 
2016; Sipes et al., 2017, 2013). By searching for “ToxCast” or “Tox21” as 
keywords in PubMed (https://pubmed.ncbi.nlm.nih.gov/), it was 
confirmed that the number of papers using each database continued to 
increase from 2006, when they first appeared (Fig. 3; accessed 
December 7, 2021). In total 542 papers were identified in PubMed 
database since 2006 (accessed May 30, 2022). Here, we have conducted 
a systematic review on 110 papers using ToxCast/Tox21 dataset pub
lished in the recent three years. These studies could be broadly classified 

Table 3 
Summary of cytotoxicity assays and their chemical activity from ToxCast INVITRODB_V3_2. The cytotoxicity assays are indicated by the “burst_assay”, “cell_viability”, 
and “intended_target_subfamily” fields in the assay summary file.  

Assay source No. of assays Average no. of chemicals 

Total burst_assay (= 1) cell_viability (= 1) Intended target subfamily (cytotoxicity) Total Active Active (Z-score > 3) 

ACEA 3 3 3 3 2234 790 213 
APR 6 2 6 6 560 149 13 
ATG 1 0 1 1 3402 226 3 
BSK 13 12 13 13 1484 384 78 
CEETOX 2 0 1 1 655 59 25 
NCCT 1 0 1 1 580 316 58 
NHEERL 2 0 2 2 332 161 42 
TOX21 77 69 77 72 7901 1003 119  

Fig. 2. Summary of chemical-gene combinations and number of chemicals and genes by groups in INVITRODB_V3_2.  
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into the following five categories according to their research purposes: 
Identification of toxicity mechanism of environmental chemicals, Pri
oritization of chemicals with their toxic potential, Identification of 
contaminants for environmental monitoring, Validation or development 
of novel assay, and AI-based toxicity prediction (Table S4, Fig. 4). 
Although there were some overlapping cases, they were classified as the 
most representative objectives. Among these, target toxicity endpoints, 
and target chemical groups were analyzed for 49 papers in 2021, 
excluding five review papers out of a total of 54 papers searched for with 
the keyword “ToxCast” in PubMed (a summary of the 49 papers is 
presented in Table S5). 

When analyzing papers with target toxicity endpoints, the endpoints 
related to endocrine disruption were the most common (14 papers), 
followed by carcinogenicity (five papers), hepatic steatosis, immuno
toxicity, and developmental toxicity with two papers each (Fig. 5A). 
Endocrine disruption is one of the toxicity endpoints that has been 
continuously studied since 2009 to the extent that the US EPA has been 
conducting the Endocrine Disruptor Screening Program (EDSP) using 
the ToxCast/Tox21 database since 2009 (Juberg et al., 2014). To this 
end, assays related to estrogen receptors (Klutzny et al., 2022; Korn
huber et al., 2021; Wang et al., 2021b) androgen receptors (Prichysta
lova et al., 2021), and thyroid hormone receptors (Garcia De Lomana 

Table 4 
Top10 gene scores and their chemical-gene combinations.  

Rank Gene score Assay name Gene target Chemical name CAS No. 

1 48.02 TOX21_p53_BLA_p1_ratio TP53 Hydroxylamine sulfate (2:1) 10,039–54-0 
2 46.23 TOX21_H2AX_HTRF_CHO_Agonist_ratio H2AFX Hexabromobenzene 87–82-1 
3 44.22 TOX21_ERa_LUC_VM7_Agonist ESR1 Atracurium besylate 64,228–81-5 
4 44.19 TOX21_ERa_LUC_VM7_Agonist ESR1 Iopamidol 60,166–93-0 
5 44.17 TOX21_ERa_LUC_VM7_Agonist ESR1 Tolazoline hydrochloride 59–97-2 
6 43.85 TOX21_p53_BLA_p3_ratio TP53 Lactobionic acid 96–82-2 
7 43.59 TOX21_ERa_BLA_Antagonist_ratio ESR1 Butirosin disulfate 51,022–98-1 
8 43.31 TOX21_AR_BLA_Antagonist_ratio AR Butirosin disulfate 51,022–98-1 
9 42.99 TOX21_AR_BLA_Antagonist_ratio AR Nithiamide 140–40-9 
10 42.99 TOX21_ERa_BLA_Antagonist_ratio ESR1 Gonadorelin hydrochloride 51,952–41-1  

Fig. 3. Number of publications indexed by PubMed annually using search terms “ToxCast” and “Tox21”.  

Fig. 4. Trend of the (A) study object using ToxCast/Tox21 in recent three years, and (B) its summary.  
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et al., 2021; Ramhøj et al., 2021) have been used. In the analysis of 
chemicals targeted in the papers, environmental chemicals were tar
geted in 41 papers, food-related chemicals in seven papers, and chem
icals related to drugs in four papers (Fig. 5B). Although there have been 
many studies targeting environmental chemicals, about one-third of 
them did not target specific chemicals of interest, but instead analyzed 
ToxCast or Tox21 chemical libraries to screen toxicity endpoints (Feng 
et al., 2021; Mayasich et al., 2021; Wang et al., 2021a). 

4.1. Study objectives: identification of toxicity mechanism of 
environmental chemicals 

Seven studies were conducted to identify toxicity mechanism of 
environmental chemicals (Table 5). In these studies, there was an 
approach to obtain evidence of a toxic mechanism through the activity 
of various assays and an approach to determine the toxicity mechanism 
using assays related to specific toxicity endpoints. Of these, if the latter 
approach is used, not only can the toxicity mechanisms of the chemicals 
be identified, but the chemicals can also be prioritized for the corre
sponding endpoints. For example, in the study by Singh and Hsieh 
(2021), the coverage of 274 ToxCast/Tox21 assays for the key charac
teristics of carcinogens was evaluated, and the potential carcinogenic 
activity of 23 per- and polyfluorinated alkyl substances (PFAS) was 
confirmed. In a study by Ravichandran et al. (2021), 296 assays for skin 
sensitization were identified based on adverse outcome pathways in the 
AOP Wiki. Skin-sensitizing fragrance chemicals were identified among 
153 fragrance chemicals. As the range of toxicity mechanisms that can 
be utilized in ToxCast/Tox21 is wide, it is necessary to identify assays 

related to various toxicity endpoints to study the toxicity mechanisms of 
a chemical of interest. However, the cytotoxicity range or Z-score was 
not considered in these seven studies. It is important to consider the 
specific activity in the study of toxicity mechanisms; therefore, it is 
recommended to be considered in future studies. 

4.2. Study objectives: prioritization of chemicals with their toxic potential 

Nine papers were conducted to prioritize chemicals with their toxic 
potential (Table 6). These studies used an approach of prioritizing the 
most hazardous chemicals for many chemicals using either the activity 
or AC50 values for the assay associated with the toxicity endpoint of 
interest. For example, Krishna et al. (2021) ranked 892 chemicals in the 
ToxCast chemical library using the CardioToxPi tool based on an assay 
related to cardiovascular toxicity. Based on the toxicity endpoint, the 
number of papers on endocrine disruption was the highest (five papers). 
A study by Zhao et al. (2021) used the ToxPi tool (Marvel et al., 2018; 
Reif et al., 2010) based on 97 assays targeting estrogen, androgen, and 
thyroid pathways and the glucocorticoid receptor, peroxisome 
proliferator-activated receptors (PPARs), and monoamine signaling. By 
integrating this and the hazard information obtained through toxicity 
prediction with the exposure information obtained from the US EPA 
Systematic Empirical Evaluation of Models (SEEM) (Wambaugh et al., 
2014), 7770 chemicals (including the ToxCast/Tox21 chemical library) 
were prioritized based on the risk index. As the prioritization of chem
icals is associated with a reduction in animal testing, many studies have 
linked ToxCast/Tox21 bioactivity data with in vivo toxicity or exposure 
information (Cardona and Rudel, 2021; Luo and Wu, 2021; Polemi et al., 

Fig. 5. Summary of the (A) target toxicity endpoints, and (B) target chemical groups used in studies using ToxCast/Tox21 datasets.  

Table 5 
Summary of studies for identification of toxicity mechanism.  

No. ToxCast/Tox21 data Chemicals Reference 

Assays Endpoints Parameter Library Category Number 

1 94 Tox21 assays (invitrodb v3.2) Carcinogenicity Hitcall Steviol glycosides Food – (Chappell et al., 2021) 
2 All assays (522) in which drugs were tested – AC50 Troglitazone, 

rosiglitazone 
Drug 2 (Dirven et al., 2021) 

3 ATG_PXRE_CIS_up 
ATG_PXR_TRANS_up 
ATG_PPARg_TRANS_up 

Hepatic steatosis AC50 Novel flame retardants Environment 9 (Negi et al., 2021) 

4 296 assays for skin sensitization Skin sensitization Hitcall Fragrance chemicals Environment 153 (Ravichandran et al., 
2021) 

5 All assays – AC50 Herbicide safeners Environment 9 (Simonsen et al., 2021) 
6 Assays on IARC key characteristics of 

carcinogens 
Carcinogenicity AC50 PFAS Environment 23 (Singh and Hsieh, 2021) 

7 47 Tox21 assays – AC50 Antiviral drugs Drug 12 (Tarazona et al., 2021)  

J. Jeong et al.                                                                                                                                                                                                                                    
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2021; Zhao et al., 2021). Recently, in vitro-to-in vivo extrapolation 
studies considering exposure and toxicokinetics have been being con
ducted (Honda et al., 2019; Paul et al., 2020; Ring et al., 2021). This is a 
desirable research direction for the use of HTS data in risk assessment in 
the future and will be discussed in more detail below. 

4.3. Study objectives: identification of contaminants for environmental 
monitoring 

Seven studies were conducted to identify contaminants for envi
ronmental monitoring (Table 7). These studies have used an approach to 
identify or prioritize the toxic mechanisms of chemicals in samples taken 
from the environment, such as surface water or soil, in the context of 
ecological risk assessment. Because these studies used environmental 
samples, exposure concentrations were considered using the exposure- 
activity ratio (EAR) approach (Becker et al., 2015; Schroeder et al., 
2016) For example, in a study by Alvarez et al. (2021), 19 chemicals of 
concern and their toxic mechanisms were identified by calculating the 
EAR by comparing environmental concentrations and bioactivity data of 
ToxCast/Tox21 for samples from tributaries of the Great Lakes. In 
another study (Bradley et al., 2021b), EAR based on ToxCast data was 
used to confirm the cumulative effects of pesticides and pharmaceuticals 
on rivers. In this study, the activity concentration at cutoff (ACC), not 
the AC50, was mainly used to estimate the point of departure (PoD). 

4.4. Study objectives: validation or development of novel assay 

Twelve studies were conducted to validate or develop novel assay 
(Table 8). These studies did not focus on toxicity mechanisms, chem
icals, or concerns, but rather on the use of ToxCast/Tox21 data or 
chemical libraries in the development of specific assays or novel ap
proaches. For example, Kornhuber et al. (2021) used ToxCast data and 
reference chemicals in the process of developing the E-Morph assay, an 
image-based phenotypic screening assay, to evaluate endocrine disor
ders (Shah et al., 2021). 

5. AI-based toxicity prediction using ToxCast/Tox21 assay data 

The development of models for toxicity prediction is an emerging 
field in toxicology owing to the rapid development of computational 
technology since the introduction of big data-based AI technology to the 
toxicology field. Toxicity prediction in the field of environmental toxi
cology generally aims to obtain information for prioritization of chem
icals for risk assessment by integrating information from chemical 
toxicity databases and computational techniques. 

One of the most important aspects to consider in the development of 
a toxicity prediction model is that the performance of models relies 
heavily on the quantity and quality of data. The sparsity of data and data 
quality are the foremost problems in toxicity prediction. As ToxCast/ 
Tox21 data are generated by automated robotic-technology-aided HTS 
technology for numerous environmental chemical substances, the data 
produced through this automated technology have high homogeneity. In 

Table 6 
Summary of studies for chemical prioritization.  

No. ToxCast/Tox21 data Chemicals Reference 

Assays Endpoints Parameter Library Category Number 

1 Two HT-H295R steroidogenesis assay Carcinogenicity Hitcall, 
AC50, 
AC10 

ToxCast libraries Environment 654 (Cardona and 
Rudel, 2021) 

2 314 assays Cardiotoxicity AC50 ToxCast libraries Environment 1138 (Krishna et al., 
2021) 

3 76 assays, representing 11 nuclear receptors Endocrine 
disruption 

AC50 Pesticides in food Food 79 (Luo and Wu, 2021) 

4 39 immune-related assays, 16 ECM-related assays, 6 
TF assays 

Immunotoxicity AC50 Food, PFAS Food, 
Environment 

63 
22 

(Naidenko et al., 
2021) 

5 All assays Carcinogenicity TP, ACC Biomarker chemicals 
for breast cancer 

Environment 43 (Polemi et al., 
2021) 

6 ER, AR assays Endocrine 
disruption 

Hitcall Endocrine-disrupting 
chemicals (EDCs) 

Environment 24 (Prichystalova 
et al., 2021) 

7 TPO assay Endocrine 
disruption 

IC50 TPO inhibitors Environment 320 (Ramhøj et al., 
2021) 

8 TOX21_Aromatase_Inhibition, 
NVS_ADME_hCYP19A1 

Endocrine 
disruption 

Hitcall, 
Ac50 

Aromatase inhibitors Environment 5 (Villeneuve et al., 
2021) 

9 97 assays for ER, AR, and TR pathways and GR, 
PPARs, and monoamine signaling 

Endocrine 
disruption 

AC50, 
Emax 

ToxCast/Tox21 dataset Environment 8845 (Zhao et al., 2021)  

Table 7 
Summary of studies for environmental monitoring.  

No. ToxCast/Tox21 data Chemicals Reference 

Assays Endpoints Parameter Library Category Number 

1 321 assays after preprocessing – ACC Waterborne contaminants in Great Lakes fields 
sample 

Environment 143 (Alvarez et al., 
2021) 

2 848 assays (6th of November 
2019) 

– AC50, ACC Contaminants of emerging concern in North Sea Environment 208 (Barbosa et al., 
2021) 

3 invitroDBv3.2 – ACC Pesticides and pharmaceuticals in water Environment 328 (Bradley et al., 
2021b) 

4 invitroDBv3.2 – ACC Pharmaceutical, pesticide, organic wastewater 
indicators 

Environment 389 (Bradley et al., 
2021a) 

5 – – Chemical 
library 

ToxCast Phase I and Phase II chemicals Environment 890 (Feng et al., 2021) 

6 All assays – ACC Organic contaminants in European rivers Environment 476 (Malev et al., 2022) 
7 All assays – Hitcall, AC50 Landfill leachate contaminants Environment 322 (Rogers et al., 2021)  
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this context, ToxCast/Tox21 data, curated through rigorous quality 
assurance procedures for a large number of chemicals, are currently 
most suitable for the development of a toxicity prediction model for 
environmental chemicals. 

In 2014, the National Institutes of Health (NIH) held the Tox21 Data 
Challenge. The Tox21 Data Challenge was the first worldwide compe
tition for developing toxicity prediction models, aiming to predict the 
toxicity of chemicals using only chemical structure data and to utilize 
models with high performance in government agencies (Huang et al., 
2016). Recently, the development of toxicity prediction models using 
ToxCast has accelerated. 

When developing a toxicity prediction model, solving the problem of 
data imbalance between the major and minor classes is an important 
challenge for performance improvement. As with many toxicity data
bases, most assays in the ToxCast/Tox21 database are already highly 
imbalanced (Idakwo et al., 2020; Ring et al., 2021) and there are con
cerns about a decrease in performance when the number of active 
compounds is reduced in consideration of the Z-score (Kurosaki et al., 
2020). Nevertheless, as mentioned above, it is essential to consider the 
cytotoxicity range when predicting specific toxicity endpoints. Most of 
studies used the resampling technique to solve this class-imbalance 
problem. The ToxCast/Tox21 are most frequently used for the devel
opment of toxicity prediction because of the higher quantity and quality 
of data along with the ease of interpretation of the prediction results 
compared to other apical endpoint-based models. 

The scientific explanation of the predicted results is insufficient for 
regulatory applications in chemical management. This is the main 
reason why the use of the traditional QSAR models is limited to utilized 
in chemical regulation, as it is difficult to interpret the prediction results 
for the apical endpoint based on the chemical structure. In the field of 
toxicology, it is more valuable to develop a model with a reliable sci
entific basis rather than one with good performance. The mechanisms 
leading to the onset of apical toxicity are complex, and in the absence of 
evidence for the process, it is difficult to trust the results; in the worst 
case, it may be a mere coincidence. The AOP concept has emerged to 
solve this problem, which predicts toxicity through linkage with toxicity 
mechanisms. Unlike the traditional QSAR model, it is relatively easy to 
apply the AOP concept to toxicity prediction models using AI. Analyzing 
molecular endpoints with apical endpoints based on the AOP concept 
would lead to scientifically explainable toxicity predictions. These fac
tors make the ToxCast/Tox21 database preferable over the conventional 

database for apical endpoints using in vivo models. 
Among the studies using ToxCast/Tox21 assay data analyzed in this 

study, fourteen papers were classified as toxicity prediction models 
(Table 9). In these studies, mechanism-based toxicity prediction was 
developed, and endocrine disruption was the predominant toxicity 
endpoint. In a study by Jaladanki et al. (2021), a toxicity prediction 
model based on molecular docking was developed using the data of 
ToxCast/Tox21 for 12 nuclear receptors for potential endocrine 
disruption chemicals prediction. In addition, in a study by Garcia De 
Lomana et al. (2021), a classification model was developed using several 
machine learning algorithms trained on data from nine ToxCast assays 
to predict the interaction between chemical substances and molecular 
initiating events (MIEs) of thyroid hormone homeostasis. Four studies 
considered cytotoxicity range or pathway-specific assays (Firman et al., 
2021; Garcia De Lomana et al., 2021; Rathman et al., 2021; Wu et al., 
2021). In our group, we previously developed 25 artificial neural 
network models based on ToxCast/Tox21 bioassays for the selection of 
chemicals for validation of AOP (Jeong et al., 2019). We have also 
developed ToxCast bioassay-based models for the development of AOP 
relevant to microplastics (Jeong and Choi, 2020). ToxCast assays with 
intended gene targets were selected, and deep learning artificial neural 
network models were further developed based on the ToxCast assays for 
chemicals not tested in the ToxCast program. Collectively, these studies 
suggest the potential of ToxCast/Tox21 bioassay data in the develop
ment of models for the classification of bioactivity, which can be related 
to toxicity. They also suggested a combined approach using ToxCast/ 
Tox21 bioassay, and models developed based on their data have po
tential in the prioritization of chemicals, as well as in the identification 
of the mechanism of toxicity of chemicals, whose mode of action is not 
understood. 

6. Use of ToxCast/Tox21 assay data in chemical risk assessment: 
potential and limitations 

The provision of highly curated data on abundant toxicological tar
gets through strict quality assurance procedures has enabled ToxCast/ 
Tox21 data to be widely used in research such as chemical prioritization, 
assay development, and toxicity prediction. These studies are a part of 
an effort to replace animal experiments using in vitro HTS data, which is 
one of the main goals of the ToxCast/Tox21 project. Although there have 
been valuable efforts at the international level to establish confidence in 

Table 8 
Summary of studies for assay development or analysis.  

No. ToxCast/Tox21 data Chemicals Reference 

Assays Endpoints Parameter Library Category Number 

1 – – Chemical 
library 

Drugs, pesticides, industrial chemicals, 
food agents, etc 

Drug, Environment, 
Food 

1029 (Burnett et al., 
2021) 

2 Assays related to 93 
genes 

– AC50 ToxCast Phase I and Phase II chemicals Environment 1060 (Franzosa et al., 
2021) 

3 All assays – Hitcall Herbicides Environment 44 (Harrill et al., 
2021) 

4 – Neurodevelopmental 
toxicity 

ToxPi Flame retardants and its metabolites Environment 15 (Klose et al., 2021) 

5 7 ER assays Endocrine disruption Hitcall Industrial chemicals, biocides Environment 430 (Klutzny et al., 
2022) 

6 18 ER assays Endocrine disruption ER Agonist 
score 

ER chemicals Environment 18 (Kornhuber et al., 
2021) 

7 – Endocrine disruption Chemical 
library 

ToxCast libraries Environment 356 (Mayasich et al., 
2021) 

8 – Endocrine disruption Chemical 
library 

ToxCast libraries Environment 1825 (Olker et al., 2021) 

9 All assays – AC50 Food additives Food 4 (Punt et al., 2021) 
10 All assays – AC50 Chemicals with all data Environment 51 (Shah et al., 2021) 
11 – – – – – – (Sheffield et al., 

2021) 
12 – Endocrine disruption Chemical 

library 
ToxCast e1k chemicals Environment 804 (Wang et al., 

2021a)  
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the use of in vitro HTS data, such as ToxCast/Tox21, these have not been 
wholly successful for several reasons. The main drawbacks were the 
limited understanding of the mechanism and difficulties in defining how 
to meaningfully apply individual in vitro assays for risk assessment. To 
address this need, we explored several approaches as to what should be 
considered for identifying relevant assays and how they could be utilized 
(Fig. 6). 

Among recent application studies using the ToxCast/Tox21 dataset, 
international collaborative regulatory agencies have conducted research 
to enhance the utilization of ToxCast/Tox21 data in chemical risk 
assessment (Barton-Maclaren et al., 2022; Bhuller et al., 2021), as a part 
of accelerating the pace of chemical risk assessment (APCRA) initiatives 
(Kavlock et al., 2018). In these studies, the authors suggested the pos
sibility of using the toxicity values derived from the in vitro bioactivity 
data in risk assessment by comparing the PoD values calculated using 
ToxCast/Tox21 data with those from the traditional animal toxicity 
data. Paul et al. (2020) have compared PoD values for 448 substances 

and derived 400 (89%) substances, of which PoD from bioactivity data 
are less than or equal to those from in vivo studies. Furthermore, they 
compared PoD based on the ToxCast/Tox21 dataset with exposure levels 
for specific chemical groups to identify the potential of ToxCast/Tox21 
data as a risk screening tool. Another study was conducted by a research 
group in Health Canada (Beal, 2021), where they used ToxCast/Tox21 
data to calculate in vitro-based PoD for applying NAMs-based chemical 
risk assessments to Canada’s domestic substance list (DSL). They 
compared PoD values for 1042 substances and derived 990 (95%) sub
stances in which PoD from bioactivity data was less than or equal to the 
PoD values from in vivo studies. Subsequently, they compared the PoD 
based on the ToxCast/Tox21 dataset with exposure levels for DSL 
chemicals to screen the risk. 

In those studies, validation of bioactivity assay was not mainly 
addressed; nevertheless, we supposed these had been selected assays, of 
which PoD values were lower than those from traditional animal data. A 
more direct effort to validate of ToxCast/Tox21 bioassays for hazard 
identification was attempted in our previous study on the identification 
of AOP relevant to the additive chemicals in plastics (Jeong and Choi, 
2020). In this study, we used ToxCast/Tox21 data to identify the mo
lecular toxicity mechanisms of additive chemicals based on the AOP 
concept. We identified the most relevant mechanisms of toxicity to un
derstand the mechanism of toxicity of plastic additives through corre
lation analysis between molecular targets from ToxCast bioassays and 
mammalian toxicity results from ChemIDplus. We hypothesized that 
ToxCast bioassays correlated with mammalian toxicity, as statistically 
validated. 

The goal of using ToxCast data is to assess pathway-level and cell- 
based signatures that correlate with the observed in vivo toxicity via 
profiling the in vitro bioactivity of chemicals. Therefore, expert 
knowledge-based analyses of the relevant toxicity mechanisms cannot 
be excluded. Thus, it is necessary to select a toxicologically meaningful 
assay based on the target information, and to conduct advanced toxicity 
tests, mechanism-specific assays can be used either by themselves or to 

Table 9 
Summary of studies for toxicity prediction.  

No. ToxCast/Tox21 data Chemicals Reference 

Assays Endpoints Parameter Library Category Number 

1 invitrodb_v3 – AC50 Canada’s Domestic 
Substance List 

Environment 5801 (Beal, 2021) 

2 600 assays – AC50 Food additives Food 552 (Firman et al., 
2021) 

3 7 TR assays Endocrine disruption Hitcall ToxCast dataset Environment 802–6789 (Garcia De 
Lomana et al., 
2021) 

4 – – Chemical library ToxCast Phase I and 
Phase II chemicals 

Environment 1003 (Green et al., 
2021) 

5 NVS NR (AR, PR, GR, PPARα, 
PPARγ, RARα) assays 

Endocrine disruption Hitcall Fatty acids and 
ToxCast chemicals 

Food, 
Environment 

252, 
~3328 

(Jaladanki et al., 
2021) 

6 24 assays related to AOP206 Pulmonary fibrosis Hitcall Chemicals in DPM Environment 100 (Jeong et al., 
2021) 

7 ATG_ERE_CIS_up 
ATG_PXRE_CIS_up 
ATG_THRa1_TRANS_dn 
BSK_3C_uPAR_down 

Carcinogenicity, Hepatic 
steatosis, Endocrine disruption, 
Immunotoxicity 

Concentration- 
response data 

PFOA Environment 1 (Loizou et al., 
2021) 

8 18 Tanguay_ZF assays – Hitcall ToxCast dataset Environment 1018 (Lovrić et al., 
2021) 

9 – Hepatotoxicity – Active pharmaceutical 
ingredients 

Drug 98 (Rathman et al., 
2021) 

10 144 Tox21 assays – AC50 Chemicals with all 
data 

Environment 221 (Ring et al., 2021) 

11 Zebrafish embryo assay Developmental toxicity AC50 Pesticides and 
antimicrobials 

Environment 188 (Saavedra and 
Duchowicz, 2021) 

12 12 cytotoxicity- and 
proliferation-related assays 

Cytotoxicity Hitcall Test chemicals in the 
assays 

Environment 135 (Seal et al., 2021) 

13 18 ER assays Endocrine disruption Hitcall Test chemicals in the 
assays 

Environment 1357 (Wang et al., 
2021b) 

14 All assays – AC50, 
Cytotoxicity limit 

Phthalates and 
alternatives 

Environment 5 (Wu et al., 2021)  

Fig. 6. Key considerations for increasing the use of ToxCast/Tox21 data in 
chemical risk assessment. 
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provide the hypotheses needed to perform enrichment analysis of 
selected chemicals through data-driven and statistic-driven validations. 

Finally, to maximize the applicability of the validated assays to 
chemical risk assessment, in vitro-in vivo extrapolation (IVIVE) can be 
applied to validated bioassays. Some studies have suggested approaches 
for IVIVE through high-throughput toxicokinetics (HTTK), which can 
predict in vivo exposure concentrations from in vitro HTS data. For 
example, in those studies, the authors converted the minimum in vitro 
PoD values to human oral equivalent doses through a simple tox
icokinetic (TK) model or Physiologically based Toxicokinetic (PBTK) 
model (Shah et al., 2021; Luo and Wu, 2021; Punt et al., 2021). 

To make better use of ToxCast bioassay in chemical risk assessment, 
efforts should be made on assay validation based on systemic association 
with animal toxicity data combined with expert-knowledge-based de
cisions. It is also important to conduct more case studies on the quan
titative use of bioassays using substances with sufficient in vivo, 
toxicokinetic and exposure data. These efforts will aid in increasing the 
acceptance of new alternative methods and tools in the regulatory 
decision-making process. By combining the approaches used in this 
study with a sequentially structured framework, next generation risk 
assessments based on molecular toxicity mechanisms using NAMs, 
including ToxCast/Tox21 data, will be more successful. 

7. Conclusion 

With the paradigm shift in toxicity assessment, mechanism-based 
toxicity assessments have the potential to become mainstream in this 
field in the future. However, without a detailed analysis of the data 
obtained from toxicity studies, a misunderstanding of the mechanisms of 
toxicity can occur. The present work provides an overview of the factors 
to be considered for utilization of the ToxCast/Tox21 database. As the 
ToxCast/Tox21 database is widely used in toxicity prediction and 
chemical prioritization research, this study will contribute to the 
continuous efforts on how to use ToxCast/Tox21 for mechanism-based 
toxicity evaluation and risk screening of chemicals. 
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