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Editor: Maxime Culot In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using

advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of

Keywords: chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity
Tf’xcaSt/ Tox21 assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive
?:)lzzz?ta;]mechanism data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be
Prioritization used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview

of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implica-
tions for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were
derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism
identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally,
the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were
discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical priori-

Toxicity prediction
Risk assessment

tization and regulatory applications without the use of laboratory animals.

1. Introduction

Under stringent chemical regulation regimes, toxicity information is
required for many chemicals. New approach methodologies (NAMs)
have been developed to efficiently and rapidly screen for the potential
toxicity of chemicals. NAMs are a broad concept that includes in silico, in
chemico, and in vitro, and aim to improve the understanding of the
hazards of chemicals using new tools, including high-throughput
screening (HTS) (ECHA, 2016). The data produced through NAMs can
provide information on the mode of action of chemicals, allowing
mechanism-based predictions of in vivo toxicity (Shukla et al., 2010).
NAMs can also be used for toxicity screening or prioritizing chemicals in
the regulatory context (Kavlock et al., 2018). For example, in Canada, a
case study was conducted using various NAMs for regulatory purposes in
prioritization and risk assessment of substituted phenols under the
Chemicals Management Plan, and in vitro HTS data from the Toxicity
Forecaster (ToxCast) and Tox21 programs were used to set priorities
(OECD, 2018).
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ToxCast was launched by the US Environmental Protection Agency
(EPA) in 2007 to produce toxicity data on a large number of chemicals
using high-throughput in vitro assays to develop improved toxicity pre-
diction models (Richard et al., 2016). The EPA has analyzed and pub-
lished biological data from hundreds of assays for thousands of
environmental chemicals screened by the ToxCast and Tox21 collabo-
ration using a standardized data analysis pipeline (Filer et al., 2017;
Richard et al., 2021). Therefore, this database is particularly suitable
and useful for research that identifies the mechanisms of toxicity of
environmental chemicals and the development of adverse outcome
pathways (AOPs). The AOP is a framework that can maximize the reg-
ulatory use of NAMs, integrate existing knowledge, and provide scien-
tific evidence for mechanism-based toxicity assessments (Delrue et al.,
2016; Perkins et al., 2015; Wittwehr et al., 2017).

This study analyzed ToxCast/Tox21 data and reviewed recent
studies using ToxCast/Tox21 to aid mechanism-based chemical priori-
tization and toxicity prediction. Through data analysis, information on
toxicity mechanism targets, the assay-specific activity of chemicals, and
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gene scores for chemical priorities were summarized. Through a litera-
ture review, the mechanisms and assays that could be utilized for
toxicity prediction were suggested. Finally, the potential application and
limitations of using of ToxCast/Tox21 assay data for chemical risk
assessment were proposed.

2. Overview of ToxCast/Tox21 assays

The EPA’s ToxCast program released version 3.2 data (INVI-
TRODB_V3_2) in July 2019 (the data can be downloaded from htt
ps://www.epa.gov/chemical-research/exploring-toxcast-data-dow
nloadable-data). The data include chemical information, bioassay in-
formation, and summary information about the model and generated
data through its own analytical pipeline (Filer et al., 2017). AC50 or
hitcall data are mainly used in the utilization of ToxCast, but informa-
tion on the assay should be considered for the mechanism-based toxicity
evaluation and classification of chemicals. The assay summary file
provides various types of information for each assay, such as assay ID,
assay source, used organism or cell model, assay component, detection
technology, target information, citation information, and reagent
information.

There were 13 assay sources (Table 1, the full list of assays in
INVITRODB_V3_2 is provided in Table S1). As the assay platform, such
as the species used and the exposure time is different for different assay
sources, it is necessary to check which assay platform is used for each
assay. Among the assay sources, NovaScreen (NVS) provided the most
(441) assays but tested the fewest chemicals on average. NVS mainly
measures binding and enzymatic activity, and uses not only human
tissue, but also various experimental animal model-based platforms such
as rat, mouse, guinea pig, sheep, rabbit, bovine, pig, and chimpanzee.
Although the assay summary provides a variety of information, the use
of ToxCast data for mechanism-based toxicity assessment and classifi-
cation requires certain consideration of the target information and
cytotoxicity. ToxCast provides target information, such as the targets of
technological measurement and biologically intended targets. The
technological target represents the specific target of each assay readout
and is assigned solely based on the technological parameters. In
contrast, the intended target represents the biological intention of the

Table 1
Summary of assays by assay source in ToxCast INVITRODB_V3_2.
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assay and considers the signal direction relative to the controls (US EPA,
2014). Therefore, the intended target information should be used for
mechanism-based toxicity evaluation. In INVITRODB_V3_2, 949 assays
had the intended target information, and 105 assays were associated
with cytotoxicity (Fig. 1).

2.1. Assays with intended target

The intended targets belonged to 23 intended target families and
nine intended target types (Table 2; the description of the intended
target family and the number of assays by assay source are provided in
Table S2). Nuclear receptors are the most common target family (192),
followed by G protein-coupled receptors (GPCRs) (129), and kinases
(122). Nuclear receptors play a role in mediating the activity of lipo-
philic substances, such as xenobiotics, endogenous hormones, and
certain vitamins (US EPA, 2014) and attagene (ATG) provides 115 as-
says. GPCRs play a role in integrating extracellular signals such as
hormones, growth factors, and neurotransmitters, into downstream re-
sponses (US EPA, 2014), and NVS provides 76 assays. As NVS provided
most of the assays, it had assays corresponding to 14 of the 23 intended
target families. Based on the intended target type, there are many assays
in the order of protein, pathway, RNA, and molecular messenger. Among
the protein types, there were 264 enzymes, 230 transcription factors,
and 190 receptors. These target families include well-known toxic tar-
gets associated with genotoxicity, developmental biology, cell signal
transduction pathways, and xenobiotic metabolism. As the under-
standing of toxic pathways increases, the use of ToxCast assays is ex-
pected to increase (Kavlock et al., 2012).

2.2. Assays for cytotoxicity

In the assay summary file, assays with “burst_assay” of “1”, “cell -
viability” of “1”, or “intended target subfamily” of “cytotoxicity” were
selected as cytotoxicity-related assays. A total of 105 cytotoxicity-
related assays were included in the ToxCast INVITRODB_V3_2 assay
data (Table 3, The full list of cytotoxicity-related assays is provided in
Table S3). Based on the assay source, the cytotoxicity assay provided by
Tox21 was the highest (77), followed by BSK (13). By criteria, assays

Assay No. of Model Format Time Readout (function) Readout (detection) Average no. of
Source assays (well point (h) chemicals
plate)
ACEA 6 T47D, 22Rv1 384 80 Viability, signaling Label Free Technology 2234
APR 160 HepGz2, hepatocyte 384 1, 24, 48, Viability, signaling Fluorescence 398
72
ATG 265 HepG2 24 24 Reporter gene, background Fluorescence 2375
control, viability
BSK 174 Various cell lines 96 24 Background control, viability, Spectrophotometry, Fluorescence, 1484
signaling Microscopy
CEETOX 46 H295R 96 48 Detection of steroid hormone, Spectrophotometry, Fluorescence 344
viability
CLD 48 Hepatocyte 96 6, 24, 48 Reporter gene, background Luminescence 309
control
NCCT 5 HEK293T 384 0.5, 24 Viability, binding Luminescence, Fluorescence, 424
Spectrophotometry
NHEERL 8 J1 embryonic stem cells, 96 2, 3, 144, Viability, signaling, enzymatic Fluorescence, Spectrophotometry, 346
HEK293T, zebrafish 192 activity, viability, binding, Luminescence, Radioactivity,
embryo developmental defect Microscopy
NVS 441 Various tissues 48, 96, 384 0.33-72 Binding, enzymatic activity Spectrophotometry, Fluorescence, 109
Radiometry
oT 17 HEK293T, CHO-K1, HeLa 384 2, 8,16, Reporter gene, binding Luminescence, Fluorescence, 1858
24 Microscopy
TANGUAY 19 Dechorionated zebrafish 96 120 Developmental defect Microscopy 1060
embryo
TOX21 280 Various cell lines 1536 0.5-48 Background control, reporter Luminescence, Fluorescence 6692
gene, signaling, viability
UPITT 4 NA 384 NA NA NA 1962
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Fig. 1. ToxCast/Tox21 assay overview by endpoint category based on intended target family in INVITRODB_V3_2.
Table 2
Number of assays by intended target family and intended target type from ToxCast INVITRODB_V3_2.
Intended target type Molecular messenger Pathway Protein RNA Total
Intended B ; .
target family Enzyme Protein-specified Receptor Transcription factor Transporter NA mRNA
Cell adhesion molecules - - - 32 - - - - - 32
cyp — — 61 - - - - - 18 79
Cytokine - - - 82 - - - _ 82
Deiodinase - - 1 - - - - - _ 1
dna binding - 19 - - 69 - — - 89
Esterase - - 12 - - - - - - 12
gper - 1 - 6 78 44 - - - 129
Growth factor - - - 4 - 2 — _ _ 6
Histones - 1 - - - - - - - 1
Hydrolase - 1 11 - - - - - - 12
Ion channel - - - — 20 _ _ _ _ 20
kinase - - 86 - 36 - - - - 122
Lyase - - 2 1 - — _ 3 6
Methyltransferase - - 2 - - - - - 2
Misc protein - - 1 1 - - _ _ 4
Nuclear receptor - 25 - - 51 115 - 1 - 192
Oxidoreductase - - 18 - 2 - - - - 20
Phosphatase - - 39 - - - - - - 39
protease — - 30 12 — - — — — 42
Protease inhibitor - - - - - - - - 4
Steroid hormone 22 - - - - — _ _ 22
Transferase - - - - _ - _ 9 9
Transporter - - 1 - - - 11 - 12 24
Total 22 47 264 142 190 230 11 1 42 949

corresponding to “cell_viability” of “1” were 104 out of 105, except for
the ‘CEETOX_H295R _MTT cell viability up’ assay. This assay was
analyzed in the positive fitting direction (looking to detect an increase in
viability) relative to DMSO as the negative control and baseline of
activity.

A study analyzing the ToxCast dataset by Judson et al. (2016) re-
ported that cytotoxicity was observed in the tested concentration range
for approximately half of the chemicals tested. Therefore, a significant
proportion of the measured activities may be due to the assay interfer-
ence process caused by cytotoxicity (cytotoxicity-associated “burst”).
Therefore, cytotoxicity assays should be considered when using ToxCast
data for toxicity mechanism research, as it is necessary to confirm

whether assay activity is associated with specific biomolecular in-
teractions (true positives) or false positives confounded by cytotoxicity.
Z-scores have been proposed to allow for the alignment of cytotoxicity
regions across chemicals, independent of specific AC50s (Judson et al.,
2016). A high Z-score (> 3) indicated that the activity occurred at
concentrations below the cytotoxic region.

When the Z-score was applied to the cytotoxicity assay, many
chemicals showed activity at a Z-score of three or higher (Table 3). This
may be because it is difficult to consider the concentration range of
cytotoxicity for all chemicals and assays when calculating the Z-score.
Therefore, when checking the activity of chemicals specific to an assay,
it is necessary to check whether the Z-score is three or higher as well as
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Table 3
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Summary of cytotoxicity assays and their chemical activity from ToxCast INVITRODB_V3_2. The cytotoxicity assays are indicated by the “burst_assay”, “cell_viability”,

and “intended_target_subfamily” fields in the assay summary file.

Assay source No. of assays

Average no. of chemicals

Total burst_assay (= 1) cell_viability (= 1) Intended target subfamily (cytotoxicity) Total Active Active (Z-score > 3)

ACEA 3 3 3 3 2234 790 213

APR 6 2 6 6 560 149 13

ATG 1 0 1 1 3402 226 3

BSK 13 12 13 13 1484 384 78

CEETOX 2 0 1 1 655 59 25

NCCT 1 0 1 1 580 316 58

NHEERL 2 0 2 2 332 161 42

TOX21 77 69 77 72 7901 1003 119

the distribution of the cytotoxic concentration range of the assay of in-
terest. Nevertheless, a high Z-score means that the chemical activity is
more likely to be true positive (not associated with cytotoxicity) than a
low Z-score, thus adding confidence to the assay-specific activity.

3. Overview of chemical-gene combinations in ToxCast/Tox21
data

The gene score was calculated based on potency (AC50) and speci-
ficity (Z-score) and can be used to set the priority of chemicals (Auer-
bach et al., 2016; Baker et al., 2020; Janesick et al., 2016; Leung et al.,
2016). In this study, the gene score was calculated by removing chem-
icals with a cytotoxic Z-score of <3 and then integrating the Z-score with
a negative log-molar transformed AC50 value [—log (AC50) + Z-score].
Chemical-gene combinations with a gene score of seven or higher were
the most interesting, meaning that the Z-score was greater than three
and the AC50 was <100 pM, because this was the widely tested con-
centration in most of the assays (Kleinstreuer et al., 2017).

The overall number of chemical-gene combinations of the 949 assays
with the intended target information is summarized (Fig. 2). 1,796,348
chemical-gene combinations were tested (20.6% of a total of 8,739,341
combinations), and among them, 125,427 chemical-gene combinations
were active (7.0% of tested combinations). This indicates that the data
imbalance between active and inactive ToxCast/Tox21 is severe. The
true positive chemical-gene combinations with Z-scores greater than
three were 38,706 (30.9% of active combinations), and 12,669 combi-
nations had gene scores greater than seven (32.7% of true positive
combinations). A total of 698 genes (73.6%, out of 949) and 3346
chemicals (36.3%, out of 9209) were included.

In the analysis of the chemical-gene combination with the highest

gene score, among the top 10 combinations, the estrogen receptor gene
was the most common with five genes, followed by the androgen re-
ceptor and the p53 gene with two genes each (Table 4). The top-ranked
chemical-gene combination was hydroxylamine sulfate (2:1)-TP53 with
a gene score of 48.02, the second-ranked combination was
hexabromobenzene-H2AFX with a gene score of 46.23, followed by the
atracurium besylate-ESR1 combination with a gene score of 44.22.
Because cytotoxicity may occur even when the Z-score is three or higher
(Table 3), the higher the Z-score, the higher is the specificity of the ac-
tivity. However, since the Z-score ranges from 3 to 41.81 and -log
(AC50) ranges from —4.65 to 6.21, the specificity (Z-score) is considered
more than the potential (AC50) in the gene score, which is simply the
addition of the Z-score and -log (AC50). Therefore, attention should be
paid to setting chemical priorities using gene scores, depending on the
study purpose.

4. Recent studies using ToxCast/Tox21 assay data

The ToxCast/Tox21 dataset has been used in many studies on the
toxicity mechanism of chemicals as a high-quality data generated
through a consistent statistical process that includes the effects of
thousands of chemicals on various protein targets (Auerbach et al.,
2016; Sipes et al., 2017, 2013). By searching for “ToxCast” or “Tox21” as
keywords in PubMed (https://pubmed.ncbi.nlm.nih.gov/), it was
confirmed that the number of papers using each database continued to
increase from 2006, when they first appeared (Fig. 3; accessed
December 7, 2021). In total 542 papers were identified in PubMed
database since 2006 (accessed May 30, 2022). Here, we have conducted
a systematic review on 110 papers using ToxCast/Tox21 dataset pub-
lished in the recent three years. These studies could be broadly classified

Grou Chemical-gene No. of No. of

B combinations (%) chemicals genes
Tested 1,796,348 (100%) 9,209 949
Active 125,427 (7.0%) 6,899 787
Z-score >3 38,706 (2.2%) 5,328 741
Gene score >7 12,669 (0.7%) 3,346 698

Fig. 2. Summary of chemical-gene combinations and number of chemicals and genes by groups in INVITRODB_V3_2.
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Table 4
Topl0 gene scores and their chemical-gene combinations.
Rank Gene score Assay name Gene target Chemical name CAS No.
1 48.02 TOX21_p53_BLA_pl _ratio TP53 Hydroxylamine sulfate (2:1) 10,039-54-0
2 46.23 TOX21_H2AX HTRF_CHO_Agonist_ratio H2AFX Hexabromobenzene 87-82-1
3 44.22 TOX21_ERa_LUC_VM7_Agonist ESR1 Atracurium besylate 64,228-81-5
4 44.19 TOX21_ERa_LUC_VM7_Agonist ESR1 Iopamidol 60,166-93-0
5 4417 TOX21_ERa_LUC_VM7_Agonist ESR1 Tolazoline hydrochloride 59-97-2
6 43.85 TOX21_p53_BLA _p3_ratio TP53 Lactobionic acid 96-82-2
7 43.59 TOX21_ERa_BLA_Antagonist_ratio ESR1 Butirosin disulfate 51,022-98-1
8 43.31 TOX21_AR_BLA_Antagonist_ratio AR Butirosin disulfate 51,022-98-1
9 42.99 TOX21_AR_BLA_Antagonist_ratio AR Nithiamide 140-40-9
10 42.99 TOX21_ERa_BLA_Antagonist_ratio ESR1 Gonadorelin hydrochloride 51,952-41-1
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Fig. 3. Number of publications indexed by PubMed annually using search terms “ToxCast” and “Tox21".

into the following five categories according to their research purposes:
Identification of toxicity mechanism of environmental chemicals, Pri-
oritization of chemicals with their toxic potential, Identification of
contaminants for environmental monitoring, Validation or development
of novel assay, and Al-based toxicity prediction (Table S4, Fig. 4).
Although there were some overlapping cases, they were classified as the
most representative objectives. Among these, target toxicity endpoints,
and target chemical groups were analyzed for 49 papers in 2021,
excluding five review papers out of a total of 54 papers searched for with
the keyword “ToxCast” in PubMed (a summary of the 49 papers is
presented in Table S5).

(A)

When analyzing papers with target toxicity endpoints, the endpoints
related to endocrine disruption were the most common (14 papers),
followed by carcinogenicity (five papers), hepatic steatosis, immuno-
toxicity, and developmental toxicity with two papers each (Fig. 5A).
Endocrine disruption is one of the toxicity endpoints that has been
continuously studied since 2009 to the extent that the US EPA has been
conducting the Endocrine Disruptor Screening Program (EDSP) using
the ToxCast/Tox21 database since 2009 (Juberg et al., 2014). To this
end, assays related to estrogen receptors (Klutzny et al., 2022; Korn-
huber et al., 2021; Wang et al., 2021b) androgen receptors (Prichysta-
lova et al., 2021), and thyroid hormone receptors (Garcia De Lomana

(B)

- =Mechanism - —Monitoring - - 17 : 3
Monitoring
- —Prediction 13%
o Prediction
2 26%
2 Mechanism
2 5 19%
5 7
8 ) 66 6
E 5 . el .
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Fig. 4. Trend of the (A) study object using ToxCast/Tox21 in recent three years, and (B) its summary.
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Fig. 5. Summary of the (A) target toxicity endpoints, and (B) target chemical groups used in studies using ToxCast/Tox21 datasets.

et al., 2021; Ramhgj et al., 2021) have been used. In the analysis of
chemicals targeted in the papers, environmental chemicals were tar-
geted in 41 papers, food-related chemicals in seven papers, and chem-
icals related to drugs in four papers (Fig. 5B). Although there have been
many studies targeting environmental chemicals, about one-third of
them did not target specific chemicals of interest, but instead analyzed
ToxCast or Tox21 chemical libraries to screen toxicity endpoints (Feng
et al., 2021; Mayasich et al., 2021; Wang et al., 2021a).

4.1. Study objectives: identification of toxicity mechanism of
environmental chemicals

Seven studies were conducted to identify toxicity mechanism of
environmental chemicals (Table 5). In these studies, there was an
approach to obtain evidence of a toxic mechanism through the activity
of various assays and an approach to determine the toxicity mechanism
using assays related to specific toxicity endpoints. Of these, if the latter
approach is used, not only can the toxicity mechanisms of the chemicals
be identified, but the chemicals can also be prioritized for the corre-
sponding endpoints. For example, in the study by Singh and Hsieh
(2021), the coverage of 274 ToxCast/Tox21 assays for the key charac-
teristics of carcinogens was evaluated, and the potential carcinogenic
activity of 23 per- and polyfluorinated alkyl substances (PFAS) was
confirmed. In a study by Ravichandran et al. (2021), 296 assays for skin
sensitization were identified based on adverse outcome pathways in the
AOP Wiki. Skin-sensitizing fragrance chemicals were identified among
153 fragrance chemicals. As the range of toxicity mechanisms that can
be utilized in ToxCast/Tox21 is wide, it is necessary to identify assays

related to various toxicity endpoints to study the toxicity mechanisms of
a chemical of interest. However, the cytotoxicity range or Z-score was
not considered in these seven studies. It is important to consider the
specific activity in the study of toxicity mechanisms; therefore, it is
recommended to be considered in future studies.

4.2. Study objectives: prioritization of chemicals with their toxic potential

Nine papers were conducted to prioritize chemicals with their toxic
potential (Table 6). These studies used an approach of prioritizing the
most hazardous chemicals for many chemicals using either the activity
or AC50 values for the assay associated with the toxicity endpoint of
interest. For example, Krishna et al. (2021) ranked 892 chemicals in the
ToxCast chemical library using the CardioToxPi tool based on an assay
related to cardiovascular toxicity. Based on the toxicity endpoint, the
number of papers on endocrine disruption was the highest (five papers).
A study by Zhao et al. (2021) used the ToxPi tool (Marvel et al., 2018;
Reif et al., 2010) based on 97 assays targeting estrogen, androgen, and
thyroid pathways and the glucocorticoid receptor, peroxisome
proliferator-activated receptors (PPARs), and monoamine signaling. By
integrating this and the hazard information obtained through toxicity
prediction with the exposure information obtained from the US EPA
Systematic Empirical Evaluation of Models (SEEM) (Wambaugh et al.,
2014), 7770 chemicals (including the ToxCast/Tox21 chemical library)
were prioritized based on the risk index. As the prioritization of chem-
icals is associated with a reduction in animal testing, many studies have
linked ToxCast/Tox21 bioactivity data with in vivo toxicity or exposure
information (Cardona and Rudel, 2021; Luo and Wu, 2021; Polemi et al.,

Table 5
Summary of studies for identification of toxicity mechanism.
No.  ToxCast/Tox21 data Chemicals Reference
Assays Endpoints Parameter  Library Category Number
1 94 Tox21 assays (invitrodb v3.2) Carcinogenicity Hitcall Steviol glycosides Food - (Chappell et al., 2021)
2 All assays (522) in which drugs were tested - AC50 Troglitazone, Drug 2 (Dirven et al., 2021)
rosiglitazone

3 ATG_PXRE_CIS_up
ATG_PXR_TRANS_up
ATG_PPARg TRANS_up

Hepatic steatosis AC50

4 296 assays for skin sensitization Skin sensitization ~ Hitcall

5 All assays - AC50

6 Assays on IARC key characteristics of Carcinogenicity AC50
carcinogens

7 47 Tox21 assays - AC50

Novel flame retardants Environment 9 (Negi et al., 2021)

Environment 153 (Ravichandran et al.,
2021)

(Simonsen et al., 2021)
(Singh and Hsieh, 2021)

Fragrance chemicals

Herbicide safeners Environment 9
PFAS Environment 23

Antiviral drugs Drug 12 (Tarazona et al., 2021)
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Table 6
Summary of studies for chemical prioritization.
No.  ToxCast/Tox21 data Chemicals Reference
Assays Endpoints Parameter Library Category Number
1 Two HT-H295R steroidogenesis assay Carcinogenicity Hitcall, ToxCast libraries Environment 654 (Cardona and
AC50, Rudel, 2021)
AC10
2 314 assays Cardiotoxicity AC50 ToxCast libraries Environment 1138 (Krishna et al.,
2021)
3 76 assays, representing 11 nuclear receptors Endocrine AC50 Pesticides in food Food 79 (Luo and Wu, 2021)
disruption
4 39 immune-related assays, 16 ECM-related assays, 6 Immunotoxicity AC50 Food, PFAS Food, 63 (Naidenko et al.,
TF assays Environment 22 2021)
5 All assays Carcinogenicity TP, ACC Biomarker chemicals Environment 43 (Polemi et al.,
for breast cancer 2021)
6 ER, AR assays Endocrine Hitcall Endocrine-disrupting Environment 24 (Prichystalova
disruption chemicals (EDCs) et al., 2021)
7 TPO assay Endocrine 1C50 TPO inhibitors Environment 320 (Rambhgj et al.,
disruption 2021)
8 TOX21_Aromatase_Inhibition, Endocrine Hitcall, Aromatase inhibitors Environment 5 (Villeneuve et al.,
NVS_ADME _hCYP19A1 disruption Ac50 2021)
9 97 assays for ER, AR, and TR pathways and GR, Endocrine AC50, ToxCast/Tox21 dataset ~ Environment 8845 (Zhao et al., 2021)
PPARs, and monoamine signaling disruption Emax

2021; Zhao et al., 2021). Recently, in vitro-to-in vivo extrapolation
studies considering exposure and toxicokinetics have been being con-
ducted (Honda et al., 2019; Paul et al., 2020; Ring et al., 2021). This is a
desirable research direction for the use of HTS data in risk assessment in
the future and will be discussed in more detail below.

4.3. Study objectives: identification of contaminants for environmental
monitoring

Seven studies were conducted to identify contaminants for envi-
ronmental monitoring (Table 7). These studies have used an approach to
identify or prioritize the toxic mechanisms of chemicals in samples taken
from the environment, such as surface water or soil, in the context of
ecological risk assessment. Because these studies used environmental
samples, exposure concentrations were considered using the exposure-
activity ratio (EAR) approach (Becker et al., 2015; Schroeder et al.,
2016) For example, in a study by Alvarez et al. (2021), 19 chemicals of
concern and their toxic mechanisms were identified by calculating the
EAR by comparing environmental concentrations and bioactivity data of
ToxCast/Tox21 for samples from tributaries of the Great Lakes. In
another study (Bradley et al., 2021b), EAR based on ToxCast data was
used to confirm the cumulative effects of pesticides and pharmaceuticals
on rivers. In this study, the activity concentration at cutoff (ACC), not
the AC50, was mainly used to estimate the point of departure (PoD).

4.4. Study objectives: validation or development of novel assay

Twelve studies were conducted to validate or develop novel assay
(Table 8). These studies did not focus on toxicity mechanisms, chem-
icals, or concerns, but rather on the use of ToxCast/Tox21 data or
chemical libraries in the development of specific assays or novel ap-
proaches. For example, Kornhuber et al. (2021) used ToxCast data and
reference chemicals in the process of developing the E-Morph assay, an
image-based phenotypic screening assay, to evaluate endocrine disor-
ders (Shah et al., 2021).

5. Al-based toxicity prediction using ToxCast/Tox21 assay data

The development of models for toxicity prediction is an emerging
field in toxicology owing to the rapid development of computational
technology since the introduction of big data-based Al technology to the
toxicology field. Toxicity prediction in the field of environmental toxi-
cology generally aims to obtain information for prioritization of chem-
icals for risk assessment by integrating information from chemical
toxicity databases and computational techniques.

One of the most important aspects to consider in the development of
a toxicity prediction model is that the performance of models relies
heavily on the quantity and quality of data. The sparsity of data and data
quality are the foremost problems in toxicity prediction. As ToxCast/
Tox21 data are generated by automated robotic-technology-aided HTS
technology for numerous environmental chemical substances, the data
produced through this automated technology have high homogeneity. In

Table 7
Summary of studies for environmental monitoring.
No.  ToxCast/Tox21 data Chemicals Reference
Assays Endpoints ~ Parameter Library Category Number
1 321 assays after preprocessing - ACC Waterborne contaminants in Great Lakes fields Environment 143 (Alvarez et al.,
sample 2021)
2 848 assays (6th of November - AC50, ACC Contaminants of emerging concern in North Sea Environment 208 (Barbosa et al.,
2019) 2021)
3 invitroDBv3.2 - ACC Pesticides and pharmaceuticals in water Environment 328 (Bradley et al.,
2021b)
4 invitroDBv3.2 - ACC Pharmaceutical, pesticide, organic wastewater Environment 389 (Bradley et al.,
indicators 2021a)
5 - - Chemical ToxCast Phase I and Phase II chemicals Environment 890 (Feng et al., 2021)
library
6 All assays - ACC Organic contaminants in European rivers Environment 476 (Malev et al., 2022)

7 All assays - Hitcall, AC50

Landfill leachate contaminants

Environment 322 (Rogers et al., 2021)
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Table 8
Summary of studies for assay development or analysis.
No.  ToxCast/Tox21 data Chemicals Reference
Assays Endpoints Parameter Library Category Number
1 - - Chemical Drugs, pesticides, industrial chemicals, Drug, Environment, 1029 (Burnett et al.,
library food agents, etc Food 2021)
2 Assaysrelatedto93 - AC50 ToxCast Phase I and Phase II chemicals  Environment 1060 (Franzosa et al.,
genes 2021)
3 All assays - Hitcall Herbicides Environment 44 (Harrill et al.,
2021)
4 - Neurodevelopmental ToxPi Flame retardants and its metabolites Environment 15 (Klose et al., 2021)
toxicity
5 7 ER assays Endocrine disruption Hitcall Industrial chemicals, biocides Environment 430 (Klutzny et al.,
2022)
6 18 ER assays Endocrine disruption ER Agonist ER chemicals Environment 18 (Kornhuber et al.,
score 2021)
7 - Endocrine disruption Chemical ToxCast libraries Environment 356 (Mayasich et al.,
library 2021)
8 - Endocrine disruption Chemical ToxCast libraries Environment 1825 (Olker et al., 2021)
library
9 All assays - AC50 Food additives Food 4 (Punt et al., 2021)
10 All assays - AC50 Chemicals with all data Environment 51 (Shah et al., 2021)
11 - - - - - - (Sheffield et al.,
2021)
12 - Endocrine disruption Chemical ToxCast elk chemicals Environment 804 (Wang et al.,
library 2021a)

this context, ToxCast/Tox21 data, curated through rigorous quality
assurance procedures for a large number of chemicals, are currently
most suitable for the development of a toxicity prediction model for
environmental chemicals.

In 2014, the National Institutes of Health (NIH) held the Tox21 Data
Challenge. The Tox21 Data Challenge was the first worldwide compe-
tition for developing toxicity prediction models, aiming to predict the
toxicity of chemicals using only chemical structure data and to utilize
models with high performance in government agencies (Huang et al.,
2016). Recently, the development of toxicity prediction models using
ToxCast has accelerated.

When developing a toxicity prediction model, solving the problem of
data imbalance between the major and minor classes is an important
challenge for performance improvement. As with many toxicity data-
bases, most assays in the ToxCast/Tox21 database are already highly
imbalanced (Idakwo et al., 2020; Ring et al., 2021) and there are con-
cerns about a decrease in performance when the number of active
compounds is reduced in consideration of the Z-score (Kurosaki et al.,
2020). Nevertheless, as mentioned above, it is essential to consider the
cytotoxicity range when predicting specific toxicity endpoints. Most of
studies used the resampling technique to solve this class-imbalance
problem. The ToxCast/Tox21 are most frequently used for the devel-
opment of toxicity prediction because of the higher quantity and quality
of data along with the ease of interpretation of the prediction results
compared to other apical endpoint-based models.

The scientific explanation of the predicted results is insufficient for
regulatory applications in chemical management. This is the main
reason why the use of the traditional QSAR models is limited to utilized
in chemical regulation, as it is difficult to interpret the prediction results
for the apical endpoint based on the chemical structure. In the field of
toxicology, it is more valuable to develop a model with a reliable sci-
entific basis rather than one with good performance. The mechanisms
leading to the onset of apical toxicity are complex, and in the absence of
evidence for the process, it is difficult to trust the results; in the worst
case, it may be a mere coincidence. The AOP concept has emerged to
solve this problem, which predicts toxicity through linkage with toxicity
mechanisms. Unlike the traditional QSAR model, it is relatively easy to
apply the AOP concept to toxicity prediction models using Al. Analyzing
molecular endpoints with apical endpoints based on the AOP concept
would lead to scientifically explainable toxicity predictions. These fac-
tors make the ToxCast/Tox21 database preferable over the conventional

database for apical endpoints using in vivo models.

Among the studies using ToxCast/Tox21 assay data analyzed in this
study, fourteen papers were classified as toxicity prediction models
(Table 9). In these studies, mechanism-based toxicity prediction was
developed, and endocrine disruption was the predominant toxicity
endpoint. In a study by Jaladanki et al. (2021), a toxicity prediction
model based on molecular docking was developed using the data of
ToxCast/Tox21 for 12 nuclear receptors for potential endocrine
disruption chemicals prediction. In addition, in a study by Garcia De
Lomana et al. (2021), a classification model was developed using several
machine learning algorithms trained on data from nine ToxCast assays
to predict the interaction between chemical substances and molecular
initiating events (MIEs) of thyroid hormone homeostasis. Four studies
considered cytotoxicity range or pathway-specific assays (Firman et al.,
2021; Garcia De Lomana et al., 2021; Rathman et al., 2021; Wu et al.,
2021). In our group, we previously developed 25 artificial neural
network models based on ToxCast/Tox21 bioassays for the selection of
chemicals for validation of AOP (Jeong et al., 2019). We have also
developed ToxCast bioassay-based models for the development of AOP
relevant to microplastics (Jeong and Choi, 2020). ToxCast assays with
intended gene targets were selected, and deep learning artificial neural
network models were further developed based on the ToxCast assays for
chemicals not tested in the ToxCast program. Collectively, these studies
suggest the potential of ToxCast/Tox21 bioassay data in the develop-
ment of models for the classification of bioactivity, which can be related
to toxicity. They also suggested a combined approach using ToxCast/
Tox21 bioassay, and models developed based on their data have po-
tential in the prioritization of chemicals, as well as in the identification
of the mechanism of toxicity of chemicals, whose mode of action is not
understood.

6. Use of ToxCast/Tox21 assay data in chemical risk assessment:
potential and limitations

The provision of highly curated data on abundant toxicological tar-
gets through strict quality assurance procedures has enabled ToxCast/
Tox21 data to be widely used in research such as chemical prioritization,
assay development, and toxicity prediction. These studies are a part of
an effort to replace animal experiments using in vitro HTS data, which is
one of the main goals of the ToxCast/Tox21 project. Although there have
been valuable efforts at the international level to establish confidence in
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Table 9
Summary of studies for toxicity prediction.

No.  ToxCast/Tox21 data Chemicals Reference
Assays Endpoints Parameter Library Category Number

1 invitrodb_v3 - AC50 Canada’s Domestic Environment 5801 (Beal, 2021)

Substance List
2 600 assays - AC50 Food additives Food 552 (Firman et al.,
2021)
3 7 TR assays Endocrine disruption Hitcall ToxCast dataset Environment 802-6789 (Garcia De
Lomana et &l]..
2021)
4 - - Chemical library ToxCast Phase I and Environment 1003 (Green et al.,
Phase II chemicals 2021)

5 NVS NR (AR, PR, GR, PPARq, Endocrine disruption Hitcall Fatty acids and Food, 252, (Jaladanki et al.,
PPARy, RAR«) assays ToxCast chemicals Environment ~3328 2021)

6 24 assays related to AOP206 Pulmonary fibrosis Hitcall Chemicals in DPM Environment 100 (Jeong et al.,

2021)

7 ATG_ERE_CIS_up Carcinogenicity, Hepatic Concentration- PFOA Environment 1 (Loizou et al.,
ATG_PXRE _CIS_up steatosis, Endocrine disruption, response data 2021)
ATG_THRal_TRANS_dn Immunotoxicity
BSK_3C_uPAR_down

8 18 Tanguay_ZF assays - Hitcall ToxCast dataset Environment 1018 (Lovri¢ et al.,

2021)
9 - Hepatotoxicity - Active pharmaceutical ~ Drug 98 (Rathman et al.,
ingredients 2021)

10 144 Tox21 assays - AC50 Chemicals with all Environment 221 (Ring et al., 2021)

data

11 Zebrafish embryo assay Developmental toxicity AC50 Pesticides and Environment 188 (Saavedra and

antimicrobials Duchowicz, 2021)

12 12 cytotoxicity- and Cytotoxicity Hitcall Test chemicals in the Environment 135 (Seal et al., 2021)
proliferation-related assays assays

13 18 ER assays Endocrine disruption Hitcall Test chemicals in the Environment 1357 (Wang et al.,

assays 2021b)

14 All assays - AC50, Phthalates and Environment 5 (Wu et al., 2021)

Cytotoxicity limit

alternatives

the use of in vitro HTS data, such as ToxCast/Tox21, these have not been
wholly successful for several reasons. The main drawbacks were the
limited understanding of the mechanism and difficulties in defining how
to meaningfully apply individual in vitro assays for risk assessment. To
address this need, we explored several approaches as to what should be
considered for identifying relevant assays and how they could be utilized
(Fig. 6).

Among recent application studies using the ToxCast/Tox21 dataset,
international collaborative regulatory agencies have conducted research
to enhance the utilization of ToxCast/Tox21 data in chemical risk
assessment (Barton-Maclaren et al., 2022; Bhuller et al., 2021), as a part
of accelerating the pace of chemical risk assessment (APCRA) initiatives
(Kavlock et al., 2018). In these studies, the authors suggested the pos-
sibility of using the toxicity values derived from the in vitro bioactivity
data in risk assessment by comparing the PoD values calculated using
ToxCast/Tox21 data with those from the traditional animal toxicity
data. Paul et al. (2020) have compared PoD values for 448 substances

Acceptance
i Next Generation
ToxCast/Tox21 Risk Assessment
! IVIVE for
s Quantification
Assay

validation

in vitro-based

PoD

Fig. 6. Key considerations for increasing the use of ToxCast/Tox21 data in
chemical risk assessment.

and derived 400 (89%) substances, of which PoD from bioactivity data
are less than or equal to those from in vivo studies. Furthermore, they
compared PoD based on the ToxCast/Tox21 dataset with exposure levels
for specific chemical groups to identify the potential of ToxCast/Tox21
data as a risk screening tool. Another study was conducted by a research
group in Health Canada (Beal, 2021), where they used ToxCast/Tox21
data to calculate in vitro-based PoD for applying NAMs-based chemical
risk assessments to Canada’s domestic substance list (DSL). They
compared PoD values for 1042 substances and derived 990 (95%) sub-
stances in which PoD from bioactivity data was less than or equal to the
PoD values from in vivo studies. Subsequently, they compared the PoD
based on the ToxCast/Tox21 dataset with exposure levels for DSL
chemicals to screen the risk.

In those studies, validation of bioactivity assay was not mainly
addressed; nevertheless, we supposed these had been selected assays, of
which PoD values were lower than those from traditional animal data. A
more direct effort to validate of ToxCast/Tox21 bioassays for hazard
identification was attempted in our previous study on the identification
of AOP relevant to the additive chemicals in plastics (Jeong and Choi,
2020). In this study, we used ToxCast/Tox21 data to identify the mo-
lecular toxicity mechanisms of additive chemicals based on the AOP
concept. We identified the most relevant mechanisms of toxicity to un-
derstand the mechanism of toxicity of plastic additives through corre-
lation analysis between molecular targets from ToxCast bioassays and
mammalian toxicity results from ChemIDplus. We hypothesized that
ToxCast bioassays correlated with mammalian toxicity, as statistically
validated.

The goal of using ToxCast data is to assess pathway-level and cell-
based signatures that correlate with the observed in vivo toxicity via
profiling the in vitro bioactivity of chemicals. Therefore, expert
knowledge-based analyses of the relevant toxicity mechanisms cannot
be excluded. Thus, it is necessary to select a toxicologically meaningful
assay based on the target information, and to conduct advanced toxicity
tests, mechanism-specific assays can be used either by themselves or to
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provide the hypotheses needed to perform enrichment analysis of
selected chemicals through data-driven and statistic-driven validations.

Finally, to maximize the applicability of the validated assays to
chemical risk assessment, in vitro-in vivo extrapolation (IVIVE) can be
applied to validated bioassays. Some studies have suggested approaches
for IVIVE through high-throughput toxicokinetics (HTTK), which can
predict in vivo exposure concentrations from in vitro HTS data. For
example, in those studies, the authors converted the minimum in vitro
PoD values to human oral equivalent doses through a simple tox-
icokinetic (TK) model or Physiologically based Toxicokinetic (PBTK)
model (Shah et al., 2021; Luo and Wu, 2021; Punt et al., 2021).

To make better use of ToxCast bioassay in chemical risk assessment,
efforts should be made on assay validation based on systemic association
with animal toxicity data combined with expert-knowledge-based de-
cisions. It is also important to conduct more case studies on the quan-
titative use of bioassays using substances with sufficient in vivo,
toxicokinetic and exposure data. These efforts will aid in increasing the
acceptance of new alternative methods and tools in the regulatory
decision-making process. By combining the approaches used in this
study with a sequentially structured framework, next generation risk
assessments based on molecular toxicity mechanisms using NAMs,
including ToxCast/Tox21 data, will be more successful.

7. Conclusion

With the paradigm shift in toxicity assessment, mechanism-based
toxicity assessments have the potential to become mainstream in this
field in the future. However, without a detailed analysis of the data
obtained from toxicity studies, a misunderstanding of the mechanisms of
toxicity can occur. The present work provides an overview of the factors
to be considered for utilization of the ToxCast/Tox21 database. As the
ToxCast/Tox21 database is widely used in toxicity prediction and
chemical prioritization research, this study will contribute to the
continuous efforts on how to use ToxCast/Tox21 for mechanism-based
toxicity evaluation and risk screening of chemicals.
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