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Integrating AI with physics-led modeling in 
 hazard assessment and novel chemical

 design



The need for in silico design tools in 
chemical discovery

iScience 2022, 25(11),  205256 
Chem Res Toxicol 2020, 33(40), 880-888 

Need multicriteria in silico design in the upstream to mitigate 
high cost of tox testing in the downstream!
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What is in silico safer chemical design?

iScience 2022, 25(11),  205256 
Chem Res Toxicol 2020, 33(40), 880-888
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Expert rules using 
substructural alerts etc.

QSARs based on 
physchem properties

Simulations of small to 
complex systems in 
condensed phases

ML à generative AI
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Chem. Res. Toxicol. 2020, 4, 880–888



Roadblock #1: ‘Proving’ a negative in 
safer chemical design

https://www.roche.com/about/sustainability/philanthropy/science-education/biochemical-pathways/

X



But what to do mechanistic complexity, uncertainty 
and data variability??

Modeling of key 
events in toxicity 

pathways

General reactivity & 
bioavailability metrics

Trade-off: loss of resolution in model 
predictivity (but NOT robustness)

Perfectly OK when 
data variability limits 

greater precision!

Chem Res Toxicol 2023, 36(9), 1444-1450.

Balancing highly specific molecular 
transformations with general behavior 

across toxic endpoints
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Photolysis 
data

RXN pathway 
modeling

Electronic 
structure

Substructure

Lewer, J et al. Environ Sci Technol 2021, 55(17), 11713-11722
Lewer, J et al. Science Advances 2022, 8(13), eabn2058

Roadblock #2: improved (non-specific) safety may 
decrease performance/degradation
• Need systems thinking (multicriteria analysis)
• Need a way to quantify and optimize trade-offs

Case study in design: controlling safety 
and depletion of pesticides

• Indirect photolysis and ecotoxicity 
(selective vs. unintended)

Principle-driven 
model expands 

chemical training set 

Cost-effective 
approach for 
predictions

Tiered structure-to-process 
framework for indirect 

photolysis

Quantitative guide for 
structural modifications 

and rational design



Computational framework to irrationally 
screen or rationally redesign pesticides
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AA database
Structure-to-process in silico 
framework Design-vectoring blueprint

Redesign of existing chemicals

Accessible free of charge at: https://kostal.columbian.gwu.edu/software/

Clymer T et al. 
Green Chem. 2019, 
21(8), 1935-1946 

Kostal J et al. PNAS 2015, 112, 6289-6294
Melnikov F et al Green Chem. 2016, 18, 4432-4445

Orthogonalization of selective and 
unintended toxicity



Roadblock #3: if we cannot reconcile trade-offs
à broaden scope to orthogonalize design vectors
 • Indirect photodegradation and toxicity partially overlap in electronic requirements
• Can we further orthogonalize the depletion and hazard/function design vectors?

Using different orbitals for 
toxicity and for 

photodegradation 
‘uncouples’ these design 

vectors

Integrate biodegradation:
• Driven by reactivity but also target-binding 

requirements, which are orthogonal to 
reactivity!



Neural-networks and gradient-boosting methods to 
develop physics-led biodegradation models 

Adding biodegradation by 
incorporating an in-house 
developed model:

>80% 
accuracy!



If we fail to adequately reconcile trade-offs
à need to discover/design brand new molecules
 

https://zinc.docking.org/

EPA Comptox: ~ 103 AIs

Available for innovation: ~ 1060

~ 108 AIs

Orthogonalization fails due to 
modeling constraints or because of 

overlapping requirements 



AI-enabled irrational design from renewables

Problem dimensionality 
reduction: safety + depletion 
+ function à function
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Constable D iScience, 2021, 24(12), 103489
Devineni, G. ACS Books: Sustainable 
Agricultural Practices. 2023, In press.
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Bio-based 
chemical space



Throwing out the rulebook: de novo pesticide design

Target activity:
new molecules in target active sites: 
performance vs. undesired toxicity

Gen AI

ACS Cent. Sci. 2019, 5, 1572−1583

Mapping functional properties onto renewables:
Size, rigidity/flexibility, aqueous solubility + binding-site interactions 

Virtual screening

Functional match

Kostal et al. ACS Zero Hunger Summit, 2023
Devineni, G. ACS Books: Sustainable Agricultural 
Practices. Vol 1449, Ch 2, 2023, 11-30.
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SER

SER

Going beyond molecular mimicry
• How do we compensate for a potential loss 

of covalent-binding strength?

J. Chem. Inf. Model. 2024, 64, 24, 9048–9055

Cyclizing biobased products to 
prepay ‘entropy’ and create an 

electrostatically stronger inhibitor



http://kostal.columbian.gwu.edu/

Find us in SEH 4400!
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