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The need tfor /n silico design tools In L e
chemical discovery KRG

e Since 1950: 140,000+ new industrial chemicals T@X F|X
- ca. 5,000 are high-volume substances
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e 300,000+ chemicals and chemical mixtures
registered globally for commercial use
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Need multicriteria in silico design in the upstream to mitigate
iScience 2022, 25(11), 205256 . .. :
Chemn Res Toxicol 2020, 33(40), 880-888 high cost of tox testing in the downstream!




What is /n silico safer chemical design? kR
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Pred Tox kRG
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Roadblock #1 Provmg a negative In
¥ safer chemm:al deS|gn




But what to do mechanistic complexﬁry, uncertainty
and data variability??

Balancing highly specific molecular
transformations with general behavior

across toxic endpoints

Modeling of key
events in toxicity

v pathways

General reactivity &
bioavailability metrics

Trade-off: loss of resolution in model
predictivity (but NOT robustness)

Perfectly OK when
data variability limits
greater precision!

“safer chemical space”: logD,, <1.7, AE>6 eV

Band gap (eV)
4 56 7 89

200z 40 Chem Res Toxicol 2023, 36(9), 1444-1450.



Roadblock #2: improved (non-specific) safety may /7 i
decrease performance/degradation KRG

* Need systems thinking (multicriteria analysis)
* Need a way to quantify and optimize trade-offs
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Lewer, J et al. Environ Sci Technol 2021, 55(17), 11713-11722
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Computational framework to /rrafionally
screen or rafionally redesign pesticides

Accessible free of charge at: https://kostal.columbian.gwu.edu/software/

— Design-vectoring blueprint

Structure-to-process in silico

framework — AA database

Redesign of existing chemicals
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Roadblock #3: if we cannot reconcile trade-offs
- broaden scope to orthogonalize design vectors

* Indirect photodegradation and toxicity partially overlap in electronic requirements
e Can we further orthogonalize the depletion and hazard/function design vectors?
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Neural-networks and gradient-lboosting methods to 7, -

develop physics-led biodegradation models

Adding biodegradation by
incorporating an in-house
developed model:
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It we fail to adequately reconcile frade-offs
- need to discover/design brand new molecules

°

EPAPCS

https://zinc.docking.orgi e

EPA Comptox:

PESTICIDES|EPA: Pesticide Chemical S...

Orthogonalization fails due to

modeling constraints or because of
overlapping requirements
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The entries in this list have been classified in the U.S. as pesticidal “active ingredients”
(conventional, antimicrobial, or biopesticidal agents), and were sourced from the Pesticide Chemical
Search datab (https:/fi 1b.epa.
Office of Pesticide Programs.

[apex/pesticides/f?p=chemicalsearch:1) created by EPA's

Chemical Search provides a single point of reference for easy access to information previously
published in a variety of locations, including various EPA web pages and Regulations.gov. Chemical
search contains the following:

1) More than 20,000 regulatory documents;

2) Links to over 800 dockets in Regulations.gov

3) Links to pesticide tolerance (or maximum residue levels) information;

4) A variety of web services providing easy access to other scientific and regulatory information on
particular chemicals from other EPA programs and federal government sources.

It should be noted that the Pesticide Chemical Search site is not actively maintained and the various
chemicals can be out of date in terms of status.

~ 108 Als

Welcome to ZINC, a free database of commercially-available compounds for

virtual screening. ZINC contains over 230 million purchasable compounds in

( ready-to-dock, 3D formats. ZINC also contains over 750 million purchasable
'~ compounds you can search for analogs in under a minute.

Available for innovation: ~ 109
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Al-enabled /rrafional design from renewables
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Constable D iScience, 2021, 24(12), 103489
Devineni, G. ACS Books: Sustainable
Agricultural Practices. 2023, In press.
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Throwing out the rulebook: de novo pesticide design KRG

Kostal et al. ACS Zero Hunger Summit, 2023 Gen Al

Devineni, G. ACS Books: Sustainable Agricultural
Renewab] ~i ;
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Practices. Vol 1449, Ch 2, 2023, 11-30.
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Target activity: op

new molecules in target active sites: Virtual screening

performance vs. undesired toxicity Mapping functional properties onto renewables:

Size, rigidity/flexibility, aqueous solubility + binding-site interactions



Case study: .12
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Going beyond molecular mimicry kR

 How do we compensate for a potential loss
of covalent-binding strength?

Cyclizing biobased products to
prepay ‘entropy’ and create an

electrostatically stronger inhibitor

J. Chem. Inf. Model. 2024, 64, 24, 9048-9055
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