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Statistics, Neural Networks (NN), 
Machine Learning (ML), Artificial Intelligence (AI)

AI isn't magic: Statistics and information theory provides the foundation for 
understanding data and drawing interpretable conclusions.

Neural Networks and Machine Learning build upon statistics to create powerful 
prediction models, often sacrificing interpretability.

AI: Systems that replicate intelligent behaviors through learning from data and 
applying predefined rules and algorithms. Examples include task-specific Large 
Language Models (LLM), and logic-based systems.

Generative AI learns from data to create new content: text, voices, images, 
video, and computer program codes. 

Ultimate goal: Create machines that exhibit (super) human-like intelligence.



Curve fitting: Traditional statistics vs ML

• Data quality outweighs quantity: Even massive amounts of 
data won't be helpful if noisy, biased, or irrelevant to the task.

• Parsimony: the more complex the model, the less meaningful 
and more risk of overfitting.

There is a concise formula for
linear fitting to find the model 
with the least error.

For more complicated problems, we have 
to ‘find’ the model and its parameters

https://monai.io/ 

Medical imaging

Non-linear fitting
https://gbhat.com/ 

Model parameters with meaning are preferred

https://monai.io/
https://gbhat.com/


Model Verification (Fit) vs. Validation (Predict)

Verification (Fit -> Train):
• Focuses on model accuracy with training data
• Tests if model reproduces known behaviors
• Evaluates internal consistency
• Maps model parameters to physical reality

Validation (Predict -> Test):
• Tests model's predictive capabilities
• Evaluates performance on unseen conditions
• Determines transferability and generalization
• Confirms practical utility and reliability

• Correlation is not causality
• Not everything that fits can predict

Avoiding correlation mirages: Datasaurus dozen: data sets 
that have nearly identical 
mean and variance.



Garbage in - Garbage out

• Models are as good as their data. 
Poor data (e.g., inconsistent experimental conditions, missing physical 
features) leads to unreliable models, whether using classical statistics or 
machine learning.
• Classical Statistics: Sensitive to outliers and assumes clean, structured 

data. Errors in data can skew coefficients and mislead interpretations.
• Machine Learning: Can handle noise better but might be overfitting to 

artifacts in bad data (e.g., biased molecular descriptors).

• Recursive training (“echo chambers”): AI learning from its own outputs 
leads to (some) rapid improvement but also biases and uncontrolled 
evolution.

• Hallucinations: Incorrect or misleading outputs generated by AI models, 
often caused by insufficient training data or biases. These can lead to 
unreliable information and potentially harmful consequences.

• Best practices: Preprocess data rigorously, normalize features, and 
validate with a variety of data sources.



Alternatives Assessment
A process for identifying and comparing 
potential chemical, material, product or other 
alternatives that can be used as substitutes to 
replace chemicals of high concern.

OSHA guidance
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Are the Alternatives Safer?
Pollution Prevention Options Analysis System (P2OASys):

Compares potential 
Environmental 
Health and Safety 
(EHS) hazard categories:

• Both quantitative data and qualitative input.
• Each category is rated using values, key phrases, GHS classifications, or 

other hazard designations.
• Depend upon available data (SDS, PubChem, computational toxicology).

https://p2oasys.turi.org

https://p2oasys.turi.org/


AI4TUR: Document parsing

Natural Language Processing (NLP):

• AI models trained to understand the structure and information from text documents.

• Parsing: automatically extract data from SDS, webpages, and other hazard references. 

• Why would AI be necessary? PDF documents are considered unstructured data.

• Why is it useful? Saving time gathering hazard information 
(e.g.: extract and update H-codes).

• Risks of hallucination, important to supervise.
• Challenges for automatic data 

lookup from scientific journals:
• Scientific jargon: Scientific journals 

use specialized vocabulary and 
sentence structures.

• Document format: Information can 
be scattered across sections.

• Variability in document formats and 
writing styles.



Chemometrics: Statistics vs AI
• Traditionally, Partial Least Squares (PLS) fitting and Principal Component Analysis 

(PCA), identifying key variables, dominated low dimensional interpretable modeling.

• Deep learning can handle continuous and categorical data combined, but as an opaque 
(‘black box’) regarding how they arrive at their understanding.

• Variational Autoencoders (VAEs): A type of deep learning architecture that learns by 
deconstructing and reconstructing data through vectorization.

• Support Vector Machines (SVMs):
• Identify clusters, constellations 

of molecules organized by
motifs, or descriptors.

• Analyze relationships between 
descriptors and properties.

• Drug discovery.

• QSAR decision trees.

Topological
graph descriptors



AI4TUR: Hazard data gap filling

• OECD/EChA QSAR toolbox: 
• Non-AI Rule-based routines to clean, 

normalize, and transform chemical 
data into a suitable format.

• Non-AI Rule-based algorithm selects 
closest structural relatives for toxicity 
read across and trend analysis.

• AI/ML (e.g., Support Vector Machines 
or Random Forests) can be integrated 
by the user externally for model 
fitting, but QSAR toolbox native 
design prioritizes transparency over 
black-box methods.

Quantitative
Structure-Activity 

Relationship (QSAR)



• ML based Quantitative structure-property relationship (QSPR) models 
accurately forecast solubility parameters from physical properties.

• Quantitative property-consequence relationship (QPCR) can estimate ignition 
features (MIE, vapor cloud dimensions and concentrations). 

AI4TUR: Hazard data gap filling

Minimum ignition energy (MIE)

Wang et al.: Ind. Eng. Chem. Res. 2017, 56, 47−51 
Hu et al.: Ind.Eng.Chem.Res.2021,60,11627−11635 

Physics informed 
descriptors are most 

data efficient. 

https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.6b04347
https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.1c02142


HSPiP vs MIT ASKCOS for chemical property prediction

Feature

Focus Hansen Solubility Parameters Synthesis optimization

Capabilities
Solubility predictions, polymer-solvent 

interactions, integration with qualitative 
experimental data

Solubility calculation from quantum descriptors, 
process optimization, integration with 

quantitative experimental data

Output

Comprehensive solubility parameter database, 
physical property predictions (boiling point, 
vapor pressure, melting point, critical point, 

viscosity, surface tension, refractive index …)

Solubility and additional features (NMR peaks, 
buyable look-up, retrosynthesis, forward 

synthesis, dipolar moment, quantum parameters)  

Algorithms
Regression models, classification, 

Euclidean similarity, Genetic algorithms
Genetic algorithms, simulated annealing, and 

gradient-based, deep learning methods

Data 
Requirements

Moderate Much higher due to AI functionalities

Computer 
Power Usage

Any computer can do
Runs better in Ubuntu on a CPU>=4cores, needs 

RAM>=32GB

https://askcos.mit.edu/ https://www.hansen-solubility.com/HSPiP/ 

https://askcos.mit.edu/
https://www.hansen-solubility.com/HSPiP/
https://www.hansen-solubility.com/HSPiP/
https://www.hansen-solubility.com/HSPiP/


TURI FY26 Research Grant: 
ML-Powered Solvent Alternatives Search at WPI

• Kickstarted in September 2025.

• Objective: Develop ML tool to identify non-toxic, low-cost solvents replacing 
NMP (TURA chemical) for dissolving PVDF in battery recycling.

•  3-pronged selection: 
• ML prediction of HSP and grid search of solvent blends (up to 3 components).
• Evaluation of GHS hazards (acute/chronic toxicity, flammability, reactivity).
• Bulk pricing comparison.

• Research (PI: Prof. Dr. Michael Tymko; Student: Muntasir Shahabuddin):
• ML on molecular descriptors for HSP/solubility prediction.
• Exhaustive screening of blends.
• Lab Validation: High throughput turbidity experiments (modified 3D printer for 

dispensing precise blends).

• Broader Impact: Generalizable framework to accelerate any safer and 
affordable single solvent and solvent blend identification and selection.



Emerging AI Pitfalls: Brain Drain & Bust Pilots
• Cognitive Sedentarism (Kosmyna et. al, 2025): 

LLM overuse weakens neural connectivity and leads to "cognitive debt": Poorer memory 
recall (83% fail recent quotes), lower ownership of outputs, and skill atrophy over 4 
months of AI over-reliance.

• AI Failure Rate (MIT NANDA, 2025): 
95% of genAI investments are yielding zero ROI: data/contextual gaps, scaling brittleness, 
and strategy mischiefs (e.g., overhyping sales tools vs. back-office wins). 
Real hits: Fast food companies ditched error-prone voice AI; 
e-commerce companies rehired after AI's "empathy" voids tanked service.

• Take home message: Thoughtful human oversight is essential 
for a reliable development safer alternatives using AI. 

https://arxiv.org/pdf/2506.08872
https://arxiv.org/pdf/2506.08872
https://www.artificialintelligence-news.com/wp-content/uploads/2025/08/ai_report_2025.pdf


AI regulations: US vs. EU approaches
EU AI Act: centralized regulation categorizes AI systems 
into different risk levels:

• Unacceptable Risk

• Banned: Posing a clear threat to fundamental rights.

• Examples: Manipulative toys, social scoring, real-time remote biometric 
identification (with exceptions for law enforcement).

• High Risk

• Strict regulations: AI systems impacting safety or fundamental rights. 

• Used in products under EU safety legislation (toys, cars, medical devices).

• Involved in critical infrastructure, education, employment, essential 
services, law enforcement, migration, and legal interpretation.

• Pre-market assessment, incident reporting, and consumer complaint rights 
required.

• Limited Risk

• Transparency obligations: AI systems like generative AI (e.g., ChatGPT).

• Requirements: Disclosure of AI-generated content must be clearly labeled, 
prevention of illegal content, and transparency about training data.

• Minimal Risk 

• Minimal regulations: Games, chatbots, spam filters, language translation...

Feature EU AI Act US Regulations

Approach Risk-based
Sector-specific, principles-

based

Scope
Comprehensive, covering 

various AI applications

Primarily focused 
healthcare, autonomous 

vehicles

Risk Levels
Unacceptable, high, 

limited, minimal
No formal risk 
classification

Enforcement Centralized authority
Multiple federal agencies, 

state-level regulations

Focus
Preventing harm, 

protecting human rights

Promoting innovation, 
addressing ethical 

concerns

Requirements
Risk assessments, 

transparency, 
accountability

Sector-specific guidelines, 
voluntary standards

Impact on 
Businesses

Strict compliance 
obligations

Varying requirements 
depending on sector



Data (and energy, and water) hunger games

Making an image with generative AI uses 
as much energy as charging your phone

https://www.technologyreview.com/2023/12/01/
1084189/making-an-image-with-generative-ai-
uses-as-much-energy-as-charging-your-phone/ 

Data centers’ electricity consumption in 
2026 is projected to reach 1,000 terawatts, 
roughly Japan’s total consumption.

https://e360.yale.edu/features/artificial-
intelligence-climate-energy-emissions 

Water cooling of global AI may reach 4.2– 6.6 bn m3 
in 2027, which is more than the total annual water 
withdrawal of 4– 6 Denmark or half the UK
https://arxiv.org/abs/2304.03271 

This is 
not water

https://www.technologyreview.com/2023/12/01/1084189/making-an-image-with-generative-ai-uses-as-much-energy-as-charging-your-phone/
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Boiling PFAS in the server room?

• Traditional air-cooling struggles with the high heat loads of modern 
High-Performance Computing (HPC) hardware.

• Two-phase cooling with fluorinated coolants offers efficient heat rejection. 
• Benefit: Highest heat rejection rate.

• Concern: PFAS.

• Most non-PFAS volatiles are either flammable or material incompatible, 
making them unsuitable for two-phase cooling.

• Non-PFAS single-phase coolants require a different hardware configuration 
and might impact some user workflows (e.g., faster rack removal). 



HPC cooling strategies: PFAS-free tech available

Cooling Method Pros Cons
Power Usage 
Effectiveness

Heat Rejection 
Rate

Air Cooling
Lower initial cost, Simpler 

implementation

Lower efficiency at high power 
densities, Increased energy 

consumption due to fan power
1.5 – 1.8 Up to 3 kW

Liquid 
Immersion 

Cooling

Higher efficiency, Reduced energy 
consumption, Better heat 

dissipation. PFAS-free.

Higher initial cost, Increased 
complexity, Potential for leaks

1.1 - 1.3 3 - 10 kW

Direct-to-Chip 
Cooling

Excellent heat removal. Minimal 
coolant use.

PFAS-free options available

Very high initial cost, High 
complexity, Limited scalability

1.05 - 1.2 10 kW+

Two-Phase 
Cooling

High heat transfer capability
High complexity, higher potential 

for leaks, cavitation due to 
bubbling, PFAS reliance

1.1 - 1.2 5 - 200 kW

𝑃𝑈𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦

DOE - Best practices Guide for Energy Efficient Data 
Center Design

Data Center Cooling Trends for 2025 

Yuan et al., Energy and Buildings, 2021

Electronics Cooling
Immersion Cooling of Electronics in DoD Installations 
Alissa et al. Nature 641, 331–338 (2025) 

Sources:

https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design_0.pdf
https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design_0.pdf
https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design_0.pdf
https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design_0.pdf
https://www.upsite.com/blog/data-center-cooling-trends-for-2025/
https://doi.org/10.1016/j.enbuild.2021.110764
https://doi.org/10.1016/j.enbuild.2021.110764
https://www.electronics-cooling.com/2024/06/will-pfas-be-the-death-of-two-phase-cooling/
https://datacenters.lbl.gov/sites/default/files/ImmersionCooling2016.pdf
https://doi.org/10.1038/s41586-025-08832-3
https://doi.org/10.1038/s41586-025-08832-3
https://doi.org/10.1038/s41586-025-08832-3


Opportunities and Challenges in AI4TUR

• AI helps TUR by:
•Bridging data gaps (e.g.: QSAR predictions; document parsing).
•Streamlining alternatives assessment.

• However,
• Interpretable models are essential to ensure reliability.
•AI relies on data centers that consume an enormous amount of 

energy and water. 

•Some data centers rely on PFAS for primary cooling.
•  Over-reliance can lead to cognitive sedentarism.



Thank you!
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Visit our website www.turi.org for free publicly 
available databases, tools, and case studies:

• www.Cleanersolutions.org  

• https://P2OASys.turi.org 

• www.TURAdata.org

• https://www.turi.org/Our_Work/Resources   
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